找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Reinforcement Learning; Fundamentals, Resear Hao Dong,Zihan Ding,Shanghang Zhang Book 2020 Springer Nature Singapore Pte Ltd. 2020 Dee

[復制鏈接]
查看: 38588|回復: 58
樓主
發(fā)表于 2025-3-21 16:46:36 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Reinforcement Learning
副標題Fundamentals, Resear
編輯Hao Dong,Zihan Ding,Shanghang Zhang
視頻videohttp://file.papertrans.cn/265/264653/264653.mp4
概述Offers a comprehensive and self-contained introduction to deep reinforcement learning.Covers deep reinforcement learning from scratch to advanced research topics.Provides rich example codes (free acce
圖書封面Titlebook: Deep Reinforcement Learning; Fundamentals, Resear Hao Dong,Zihan Ding,Shanghang Zhang Book 2020 Springer Nature Singapore Pte Ltd. 2020 Dee
描述Deep reinforcement learning (DRL) is the combination of reinforcement learning (RL) and deep learning. It has been able to solve a wide range of complex decision-making tasks that were previously out of reach for a machine, and famously contributed to the success of AlphaGo. Furthermore, it opens up numerous new applications in domains such as healthcare, robotics, smart grids and finance.?.Divided into three main parts, this book provides a comprehensive and self-contained introduction to DRL. The first part introduces the foundations of deep learning, reinforcement learning (RL) and widely used deep RL methods and discusses their implementation. The second part covers selected DRL research topics, which are useful for those wanting to specialize in DRL research. To help readers gain a deep understanding of DRL and quickly apply the techniques in practice, the third part presents mass applications, such as the intelligent transportation system and learning to run, with detailedexplanations.?..The book is intended for computer science students, both undergraduate and postgraduate, who would like to learn DRL from scratch, practice its implementation, and explore the research topics
出版日期Book 2020
關鍵詞Deep reinforcement learning; DRL; Deep Learning; Reinforcement Learning; Machine Learning
版次1
doihttps://doi.org/10.1007/978-981-15-4095-0
isbn_softcover978-981-15-4097-4
isbn_ebook978-981-15-4095-0
copyrightSpringer Nature Singapore Pte Ltd. 2020
The information of publication is updating

書目名稱Deep Reinforcement Learning影響因子(影響力)




書目名稱Deep Reinforcement Learning影響因子(影響力)學科排名




書目名稱Deep Reinforcement Learning網(wǎng)絡公開度




書目名稱Deep Reinforcement Learning網(wǎng)絡公開度學科排名




書目名稱Deep Reinforcement Learning被引頻次




書目名稱Deep Reinforcement Learning被引頻次學科排名




書目名稱Deep Reinforcement Learning年度引用




書目名稱Deep Reinforcement Learning年度引用學科排名




書目名稱Deep Reinforcement Learning讀者反饋




書目名稱Deep Reinforcement Learning讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:06:49 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:42:17 | 只看該作者
地板
發(fā)表于 2025-3-22 05:15:53 | 只看該作者
5#
發(fā)表于 2025-3-22 12:07:04 | 只看該作者
6#
發(fā)表于 2025-3-22 15:14:17 | 只看該作者
Combine Deep ,-Networks with Actor-Criticral networks to approximate the optimal action-value functions. It receives only the pixels as inputs and achieves human-level performance on Atari games. Actor-critic methods transform the Monte Carlo update of the REINFORCE algorithm into the temporal-difference update for learning the policy para
7#
發(fā)表于 2025-3-22 20:23:23 | 只看該作者
Challenges of Reinforcement Learning; (2) stability of training; (3) the catastrophic interference problem; (4) the exploration problems; (5) meta-learning and representation learning for the generality of reinforcement learning methods across tasks; (6) multi-agent reinforcement learning with other agents as part of the environment;
8#
發(fā)表于 2025-3-22 21:21:31 | 只看該作者
Imitation Learningtential approaches, which leverages the expert demonstrations in sequential decision-making process. In order to provide the readers a comprehensive understanding about how to effectively extract information from the demonstration data, we introduce the most important categories in imitation learnin
9#
發(fā)表于 2025-3-23 04:46:02 | 只看該作者
10#
發(fā)表于 2025-3-23 07:45:36 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 07:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
明水县| 九江县| 清水河县| 洛阳市| 黔东| 措勤县| 乳山市| 西和县| 永宁县| 普兰店市| 嘉禾县| 京山县| 泰和县| 涟水县| 佳木斯市| 什邡市| 婺源县| 伊宁市| 塔城市| 睢宁县| 清水县| 封丘县| 玉田县| 榕江县| 双峰县| 图片| 黄山市| 炉霍县| 密云县| 泗水县| 云南省| 莫力| 灵石县| 嘉善县| 资源县| 任丘市| 磐石市| 邻水| 丹棱县| 枝江市| 仁寿县|