找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Mining of Visual Content; Akka Zemmari,Jenny Benois-Pineau Book 2020 The Author(s), under exclusive license to Springer N

[復(fù)制鏈接]
樓主: minuscule
31#
發(fā)表于 2025-3-26 22:59:16 | 只看該作者
Supervised Learning Problem Formulation,g consists in grouping similar data points in the description space thus inducing a structure on it. Then the data model can be expressed in terms of space partition. Probably, the most popular of such grouping algorithms in visual content mining is the K-means approach introduced by MacQueen as ear
32#
發(fā)表于 2025-3-27 02:38:31 | 只看該作者
Optimization Methods,the loss function. Most of them are iterative and operate by decreasing the loss function following a descent direction. These methods solve the problem when the loss function is supposed to be convex. The main idea can be expressed simply as follows: starting from initial arbitrary (or randomly) ch
33#
發(fā)表于 2025-3-27 09:08:08 | 只看該作者
Deep in the Wild,d dimension which finally allows a classification decision. We are interested in two operations: convolution and pooling and trace analogy with these operations in a classical Image Processing framework.
34#
發(fā)表于 2025-3-27 12:03:33 | 只看該作者
35#
發(fā)表于 2025-3-27 15:53:20 | 只看該作者
36#
發(fā)表于 2025-3-27 20:47:12 | 只看該作者
37#
發(fā)表于 2025-3-28 01:49:58 | 只看該作者
Introducing Domain Knowledge,is particular application of medical imaging domain, Deep NNs have become the mandatory tool. In this chapter we give some highlights on how the usual steps in design of a Deep Neural Network classifier are implemented in the case when domain knowledge has to be considered. But more than that: faith
38#
發(fā)表于 2025-3-28 03:33:30 | 只看該作者
2191-5768 eep neural networks and application to digital cultural content mining. An additional application field is also discussed, and illustrates how deep learning can be of very high interest to comp978-3-030-34375-0978-3-030-34376-7Series ISSN 2191-5768 Series E-ISSN 2191-5776
39#
發(fā)表于 2025-3-28 07:54:02 | 只看該作者
40#
發(fā)表于 2025-3-28 11:55:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 06:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定兴县| 临洮县| 无锡市| 休宁县| 庄河市| 安仁县| 汪清县| 抚宁县| 城市| 呼和浩特市| 桐梓县| 错那县| 昂仁县| 盐城市| 葵青区| 镇赉县| 涟源市| 甘德县| 砀山县| 伊吾县| 北辰区| 安岳县| 台南县| 溧阳市| 青岛市| 石棉县| 屏东市| 大名县| 健康| 石棉县| 崇信县| 鹤岗市| 南汇区| 沂源县| 武乡县| 安庆市| 商河县| 隆林| 绥宁县| 开封县| 新兴县|