找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Mining of Visual Content; Akka Zemmari,Jenny Benois-Pineau Book 2020 The Author(s), under exclusive license to Springer N

[復(fù)制鏈接]
查看: 47167|回復(fù): 41
樓主
發(fā)表于 2025-3-21 17:00:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Deep Learning in Mining of Visual Content
編輯Akka Zemmari,Jenny Benois-Pineau
視頻videohttp://file.papertrans.cn/265/264624/264624.mp4
概述A comprehensive overview of winning methods in visual content mining.Illustration of main concepts with graphical examples.Tracing analogy with classical visual content analysis tools
叢書(shū)名稱SpringerBriefs in Computer Science
圖書(shū)封面Titlebook: Deep Learning in Mining of Visual Content;  Akka Zemmari,Jenny Benois-Pineau Book 2020 The Author(s), under exclusive license to Springer N
描述This book provides the reader with the fundamental knowledge in the area of deep learning with application to visual content mining. The authors give a fresh view on Deep learning approaches both from the point of view of image understanding and supervised machine learning.?.It contains chapters which introduce theoretical and mathematical foundations of neural networks and related optimization methods. Then it discusses some particular very popular architectures used in the domain: convolutional neural networks and recurrent neural networks.?.Deep Learning is currently at the heart of most cutting edge technologies. It is in the core of the recent advances in Artificial Intelligence. Visual information in Digital form is constantly growing in volume. In such active domains as Computer Vision and Robotics visual information understanding is based on the use of deep learning. Other chapters present applications of deep learning for visual content mining. These include attention mechanisms in deep neural networks and application to digital cultural content mining. An additional application field is also discussed, and illustrates how deep learning can be of very high interest to comp
出版日期Book 2020
關(guān)鍵詞Artificial Intelligence; Supervised Machine Learning; Deep Learning; Artificial Neural Networks; Convolu
版次1
doihttps://doi.org/10.1007/978-3-030-34376-7
isbn_softcover978-3-030-34375-0
isbn_ebook978-3-030-34376-7Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2020
The information of publication is updating

書(shū)目名稱Deep Learning in Mining of Visual Content影響因子(影響力)




書(shū)目名稱Deep Learning in Mining of Visual Content影響因子(影響力)學(xué)科排名




書(shū)目名稱Deep Learning in Mining of Visual Content網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Deep Learning in Mining of Visual Content網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Deep Learning in Mining of Visual Content被引頻次




書(shū)目名稱Deep Learning in Mining of Visual Content被引頻次學(xué)科排名




書(shū)目名稱Deep Learning in Mining of Visual Content年度引用




書(shū)目名稱Deep Learning in Mining of Visual Content年度引用學(xué)科排名




書(shū)目名稱Deep Learning in Mining of Visual Content讀者反饋




書(shū)目名稱Deep Learning in Mining of Visual Content讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:29:45 | 只看該作者
978-3-030-34375-0The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
板凳
發(fā)表于 2025-3-22 03:58:01 | 只看該作者
地板
發(fā)表于 2025-3-22 07:02:02 | 只看該作者
Aidan Beggs,Alexandros Kapravelosd dimension which finally allows a classification decision. We are interested in two operations: convolution and pooling and trace analogy with these operations in a classical Image Processing framework.
5#
發(fā)表于 2025-3-22 11:17:22 | 只看該作者
https://doi.org/10.1007/978-3-030-22038-9der those designed for particular data: images. First of all we will expose some general principles, then go into detail layer-by-layer and finally briefly overview most popular convolutional neural networks architectures.
6#
發(fā)表于 2025-3-22 15:07:53 | 只看該作者
7#
發(fā)表于 2025-3-22 21:04:16 | 只看該作者
8#
發(fā)表于 2025-3-22 23:57:49 | 只看該作者
9#
發(fā)表于 2025-3-23 01:23:30 | 只看該作者
SpringerBriefs in Computer Sciencehttp://image.papertrans.cn/d/image/264624.jpg
10#
發(fā)表于 2025-3-23 06:14:58 | 只看該作者
Michael Brengel,Christian Rossowg consists in grouping similar data points in the description space thus inducing a structure on it. Then the data model can be expressed in terms of space partition. Probably, the most popular of such grouping algorithms in visual content mining is the K-means approach introduced by MacQueen as ear
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 16:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳朔县| 长宁区| 延寿县| 内丘县| 平邑县| 德清县| 铜陵市| 甘南县| 武冈市| 安塞县| 西畴县| 寿光市| 句容市| 永定县| 霍州市| 钟祥市| 芮城县| 菏泽市| 句容市| 湛江市| 故城县| 武穴市| 鄂托克前旗| 湾仔区| 涟水县| 阿鲁科尔沁旗| 荥经县| 太仆寺旗| 衡南县| 阳西县| 长顺县| 宁晋县| 长海县| 沂源县| 龙川县| 新昌县| 吴忠市| 抚宁县| 耿马| 景泰县| 林西县|