找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Mining of Visual Content; Akka Zemmari,Jenny Benois-Pineau Book 2020 The Author(s), under exclusive license to Springer N

[復(fù)制鏈接]
查看: 47161|回復(fù): 41
樓主
發(fā)表于 2025-3-21 17:00:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning in Mining of Visual Content
編輯Akka Zemmari,Jenny Benois-Pineau
視頻videohttp://file.papertrans.cn/265/264624/264624.mp4
概述A comprehensive overview of winning methods in visual content mining.Illustration of main concepts with graphical examples.Tracing analogy with classical visual content analysis tools
叢書名稱SpringerBriefs in Computer Science
圖書封面Titlebook: Deep Learning in Mining of Visual Content;  Akka Zemmari,Jenny Benois-Pineau Book 2020 The Author(s), under exclusive license to Springer N
描述This book provides the reader with the fundamental knowledge in the area of deep learning with application to visual content mining. The authors give a fresh view on Deep learning approaches both from the point of view of image understanding and supervised machine learning.?.It contains chapters which introduce theoretical and mathematical foundations of neural networks and related optimization methods. Then it discusses some particular very popular architectures used in the domain: convolutional neural networks and recurrent neural networks.?.Deep Learning is currently at the heart of most cutting edge technologies. It is in the core of the recent advances in Artificial Intelligence. Visual information in Digital form is constantly growing in volume. In such active domains as Computer Vision and Robotics visual information understanding is based on the use of deep learning. Other chapters present applications of deep learning for visual content mining. These include attention mechanisms in deep neural networks and application to digital cultural content mining. An additional application field is also discussed, and illustrates how deep learning can be of very high interest to comp
出版日期Book 2020
關(guān)鍵詞Artificial Intelligence; Supervised Machine Learning; Deep Learning; Artificial Neural Networks; Convolu
版次1
doihttps://doi.org/10.1007/978-3-030-34376-7
isbn_softcover978-3-030-34375-0
isbn_ebook978-3-030-34376-7Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Deep Learning in Mining of Visual Content影響因子(影響力)




書目名稱Deep Learning in Mining of Visual Content影響因子(影響力)學(xué)科排名




書目名稱Deep Learning in Mining of Visual Content網(wǎng)絡(luò)公開度




書目名稱Deep Learning in Mining of Visual Content網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning in Mining of Visual Content被引頻次




書目名稱Deep Learning in Mining of Visual Content被引頻次學(xué)科排名




書目名稱Deep Learning in Mining of Visual Content年度引用




書目名稱Deep Learning in Mining of Visual Content年度引用學(xué)科排名




書目名稱Deep Learning in Mining of Visual Content讀者反饋




書目名稱Deep Learning in Mining of Visual Content讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:29:45 | 只看該作者
978-3-030-34375-0The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
板凳
發(fā)表于 2025-3-22 03:58:01 | 只看該作者
地板
發(fā)表于 2025-3-22 07:02:02 | 只看該作者
Aidan Beggs,Alexandros Kapravelosd dimension which finally allows a classification decision. We are interested in two operations: convolution and pooling and trace analogy with these operations in a classical Image Processing framework.
5#
發(fā)表于 2025-3-22 11:17:22 | 只看該作者
https://doi.org/10.1007/978-3-030-22038-9der those designed for particular data: images. First of all we will expose some general principles, then go into detail layer-by-layer and finally briefly overview most popular convolutional neural networks architectures.
6#
發(fā)表于 2025-3-22 15:07:53 | 只看該作者
7#
發(fā)表于 2025-3-22 21:04:16 | 只看該作者
8#
發(fā)表于 2025-3-22 23:57:49 | 只看該作者
9#
發(fā)表于 2025-3-23 01:23:30 | 只看該作者
SpringerBriefs in Computer Sciencehttp://image.papertrans.cn/d/image/264624.jpg
10#
發(fā)表于 2025-3-23 06:14:58 | 只看該作者
Michael Brengel,Christian Rossowg consists in grouping similar data points in the description space thus inducing a structure on it. Then the data model can be expressed in terms of space partition. Probably, the most popular of such grouping algorithms in visual content mining is the K-means approach introduced by MacQueen as ear
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邵阳县| 抚顺市| 安仁县| 通江县| 龙江县| 白朗县| 承德县| 竹北市| 枣强县| 丰县| 临桂县| 苗栗市| 华蓥市| 石景山区| 万全县| 武隆县| 克东县| 芷江| 阳西县| 扶余县| 长武县| 洛阳市| 阿荣旗| 华容县| 屏东县| 朝阳市| 平和县| 临洮县| 海伦市| 赤城县| 仙游县| 盈江县| 牙克石市| 天长市| 揭西县| 德安县| 安庆市| 南康市| 红桥区| 禄丰县| 田林县|