找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; 4th International Wo Danail Stoyanov,Zeike T

[復(fù)制鏈接]
樓主: antithetic
31#
發(fā)表于 2025-3-26 21:37:27 | 只看該作者
Some Oxygen-Containing Compoundsets. On the synthetic dataset, we outperform state of the art methods by at least 10% in direction estimation accuracy. For the clinical dataset, we outperform competing methods by 1–4% in mean direction accuracy and 4–10% in corresponding standard deviation.
32#
發(fā)表于 2025-3-27 03:36:35 | 只看該作者
https://doi.org/10.1007/978-3-642-24034-8tes the shape information into the segmentation network. Experiments on human brain MRI segmentation demonstrate that our approach can achieve a lower Hausdorff distance and higher Dice coefficient than the state-of-the-art approaches.
33#
發(fā)表于 2025-3-27 09:09:00 | 只看該作者
Tomá? Pajdla,Michal Havlena,Jan Hellerknee. We show that a cascade of simple U-Nets may for certain tasks be superior to a single deep and complex U-Net with almost two orders of magnitude more parameters. Our framework also allows greater flexibility in trading-off performance and efficiency during testing and training.
34#
發(fā)表于 2025-3-27 11:45:48 | 只看該作者
35#
發(fā)表于 2025-3-27 16:26:19 | 只看該作者
36#
發(fā)表于 2025-3-27 18:52:22 | 只看該作者
37#
發(fā)表于 2025-3-28 00:48:27 | 只看該作者
38#
發(fā)表于 2025-3-28 05:45:14 | 只看該作者
Contextual Additive Networks to Efficiently Boost 3D Image Segmentationsknee. We show that a cascade of simple U-Nets may for certain tasks be superior to a single deep and complex U-Net with almost two orders of magnitude more parameters. Our framework also allows greater flexibility in trading-off performance and efficiency during testing and training.
39#
發(fā)表于 2025-3-28 07:26:39 | 只看該作者
Focal Dice Loss and Image Dilation for Brain Tumor Segmentationher than complex details. The structuring element for dilation is gradually downsized, resulting in a coarse-to-fine and incremental learning process with the structure of network unchanged. Our experiments on the BRATS2015 dataset achieves the state-of-the-art in Dice Coefficient on average with relatively low computational cost.
40#
發(fā)表于 2025-3-28 14:27:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 15:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苏州市| 栾川县| 桂阳县| 浙江省| 青海省| 天镇县| 定西市| 武夷山市| 蚌埠市| 平江县| 神池县| 福州市| 鹰潭市| 台州市| 安宁市| 化隆| 耒阳市| 夹江县| 桐乡市| 文安县| 龙口市| 永嘉县| 土默特右旗| 察哈| 额尔古纳市| 沙坪坝区| 靖江市| 泾源县| 博乐市| 怀远县| 漳浦县| 漯河市| 长春市| 新干县| 龙里县| 清徐县| 长寿区| 宜黄县| 宁阳县| 荆门市| 淳化县|