找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; 4th International Wo Danail Stoyanov,Zeike T

[復制鏈接]
樓主: antithetic
21#
發(fā)表于 2025-3-25 05:13:50 | 只看該作者
22#
發(fā)表于 2025-3-25 09:14:53 | 只看該作者
23#
發(fā)表于 2025-3-25 11:49:02 | 只看該作者
0302-9743 L-CDS. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support..978-3-030-00888-8978-3-030-00889-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
24#
發(fā)表于 2025-3-25 16:28:13 | 只看該作者
Some Nitrogen-Containing Compoundsuclei segmentation in the microscopy images, liver segmentation in abdominal CT scans, and polyp segmentation in colonoscopy videos. Our experiments demonstrate that UNet++ with deep supervision achieves an average IoU gain of 3.9 and 3.4 points over U-Net and wide U-Net, respectively.
25#
發(fā)表于 2025-3-25 22:44:51 | 只看該作者
A Review of Analytical Literature image, we use its differential excitation component as a pair of inputs to handle intra-class variations. Experimental results show that our approach has superior performance over the state-of-the-art methods, achieving a classification accuracy of 93.74% on our original emphysema database.
26#
發(fā)表于 2025-3-26 03:36:23 | 只看該作者
27#
發(fā)表于 2025-3-26 07:44:24 | 只看該作者
UNet++: A Nested U-Net Architecture for Medical Image Segmentationuclei segmentation in the microscopy images, liver segmentation in abdominal CT scans, and polyp segmentation in colonoscopy videos. Our experiments demonstrate that UNet++ with deep supervision achieves an average IoU gain of 3.9 and 3.4 points over U-Net and wide U-Net, respectively.
28#
發(fā)表于 2025-3-26 08:53:22 | 只看該作者
29#
發(fā)表于 2025-3-26 13:07:29 | 只看該作者
3D Convolutional Neural Networks for Classification of Functional Connectomesictive models. We showcase our approach on a challenging large-scale dataset (ABIDE, with .) and report state-of-the-art accuracy results on rs-fMRI-based discrimination of autism patients and healthy controls.
30#
發(fā)表于 2025-3-26 18:25:34 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 15:01
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
蒙阴县| 渝北区| 城固县| 睢宁县| 石楼县| 扎囊县| 临江市| 合作市| 宣汉县| 盖州市| 贺州市| 从江县| 武功县| 西贡区| 包头市| 永清县| 龙游县| 龙江县| 南康市| 松江区| 桦川县| 阿城市| 黑河市| 东乡| 威远县| 镇巴县| 鲁山县| 将乐县| 塘沽区| 介休市| 西宁市| 永新县| 琼中| 衡东县| 东乌| 蕲春县| 和林格尔县| 苍溪县| 浮山县| 浙江省| 衡南县|