找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; 4th International Wo Danail Stoyanov,Zeike T

[復(fù)制鏈接]
查看: 39334|回復(fù): 60
樓主
發(fā)表于 2025-3-21 19:52:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
副標(biāo)題4th International Wo
編輯Danail Stoyanov,Zeike Taylor,Anant Madabhushi
視頻videohttp://file.papertrans.cn/265/264622/264622.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; 4th International Wo Danail Stoyanov,Zeike T
描述.This book constitutes the refereed joint proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2018, and the 8th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018...The 39 full papers presented at DLMIA 2018 and the 4 full papers presented at ML-CDS 2018 were carefully reviewed and selected from 85 submissions to DLMIA and 6 submissions to ML-CDS. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support..
出版日期Conference proceedings 2018
關(guān)鍵詞artificial intelligence; classification; computer vision; data security; estimation; image analysis; image
版次1
doihttps://doi.org/10.1007/978-3-030-00889-5
isbn_softcover978-3-030-00888-8
isbn_ebook978-3-030-00889-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support影響因子(影響力)




書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support影響因子(影響力)學(xué)科排名




書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support網(wǎng)絡(luò)公開度




書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support被引頻次




書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support被引頻次學(xué)科排名




書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support年度引用




書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support年度引用學(xué)科排名




書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support讀者反饋




書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:49:45 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:42:59 | 只看該作者
地板
發(fā)表于 2025-3-22 04:35:35 | 只看該作者
5#
發(fā)表于 2025-3-22 12:26:13 | 只看該作者
6#
發(fā)表于 2025-3-22 14:42:42 | 只看該作者
https://doi.org/10.1007/978-90-481-8544-3rovided partial atlas and allows these labels to be propagated throughout the target image via block-matching. Using this technique we segmented brains of 22 subjects and compared its performance to expert ground truths. When provided with an atlas for which only 2% of voxels were labelled, this ach
7#
發(fā)表于 2025-3-22 20:40:26 | 只看該作者
8#
發(fā)表于 2025-3-22 23:28:33 | 只看該作者
https://doi.org/10.1007/978-3-319-40667-1 synthesized images. We validate our proposed algorithm on three popular image synthesis tasks, including brain MR-to-CT, prostate MR-to-CT, and brain 3T-to-7T. The experimental results demonstrate that our proposed method can achieve good synthesis performance by using the unpaired data only.
9#
發(fā)表于 2025-3-23 01:53:18 | 只看該作者
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support4th International Wo
10#
發(fā)表于 2025-3-23 08:17:36 | 只看該作者
A Unified Framework Integrating Recurrent Fully-Convolutional Networks and Optical Flow for Segmentamprove the segmentation accuracy. The proposed method is evaluated over an echo cine dataset of 566 patients. Experiments show that the proposed system can reach a noticeably high mean accuracy of 97.9%, and mean Dice score of 92.7% for LV segmentation in A4C view.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 15:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台中县| 琼海市| 肃宁县| 修武县| 岐山县| 克山县| 江川县| 邳州市| 侯马市| 醴陵市| 黑水县| 涟源市| 孙吴县| 泸定县| 富阳市| 平安县| 启东市| 杭锦后旗| 清徐县| 敦煌市| 红原县| 博野县| 沅江市| 金阳县| 镇宁| 巨野县| 澄江县| 永年县| 玉山县| 措美县| 山西省| 莱州市| 从江县| 大关县| 五华县| 鄄城县| 嵊泗县| 扎兰屯市| 黄骅市| 镇雄县| 田阳县|