找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Hydrometeorology and Environmental Science; Taesam Lee,Vijay P. Singh,Kyung Hwa Cho Book 2021 The Editor(s) (if applicab

[復制鏈接]
查看: 32561|回復: 46
樓主
發(fā)表于 2025-3-21 19:50:05 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning for Hydrometeorology and Environmental Science
編輯Taesam Lee,Vijay P. Singh,Kyung Hwa Cho
視頻videohttp://file.papertrans.cn/265/264608/264608.mp4
概述Provides step-by-step tutorials that help the reader to learn complex deep learning algorithms.Gives an explanation of deep learning techniques and their applications to hydrometeorological and enviro
叢書名稱Water Science and Technology Library
圖書封面Titlebook: Deep Learning for Hydrometeorology and Environmental Science;  Taesam Lee,Vijay P. Singh,Kyung Hwa Cho Book 2021 The Editor(s) (if applicab
描述.This book provides a step-by-step methodology and derivation of deep learning algorithms as Long Short-Term Memory (LSTM) and Convolution Neural Network (CNN), especially for estimating parameters, with back-propagation as well as examples with real datasets of hydrometeorology (e.g. streamflow and temperature) and environmental science (e.g. water quality). .Deep learning is known as part of machine learning methodology based on the artificial neural network. Increasing data availability and computing power enhance applications of deep learning to hydrometeorological and environmental fields. However, books that specifically focus on applications to these fields are limited..Most of deep learning books demonstrate theoretical backgrounds and mathematics. However, examples with real data and step-by-step explanations to understand the algorithms in hydrometeorology and environmental science are very rare.. .This book focuses on the explanation of deep learning techniques and their applications to hydrometeorological and environmental studies with real hydrological and environmental data. This book covers the major deep learning algorithms as Long Short-Term Memory (LSTM) and Convo
出版日期Book 2021
關(guān)鍵詞Hydrology; Meteorology; Artificial neural networks; Climate index; Convolutional neural networks; Lon Sho
版次1
doihttps://doi.org/10.1007/978-3-030-64777-3
isbn_softcover978-3-030-64779-7
isbn_ebook978-3-030-64777-3Series ISSN 0921-092X Series E-ISSN 1872-4663
issn_series 0921-092X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Deep Learning for Hydrometeorology and Environmental Science影響因子(影響力)




書目名稱Deep Learning for Hydrometeorology and Environmental Science影響因子(影響力)學科排名




書目名稱Deep Learning for Hydrometeorology and Environmental Science網(wǎng)絡公開度




書目名稱Deep Learning for Hydrometeorology and Environmental Science網(wǎng)絡公開度學科排名




書目名稱Deep Learning for Hydrometeorology and Environmental Science被引頻次




書目名稱Deep Learning for Hydrometeorology and Environmental Science被引頻次學科排名




書目名稱Deep Learning for Hydrometeorology and Environmental Science年度引用




書目名稱Deep Learning for Hydrometeorology and Environmental Science年度引用學科排名




書目名稱Deep Learning for Hydrometeorology and Environmental Science讀者反饋




書目名稱Deep Learning for Hydrometeorology and Environmental Science讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:53:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:32:47 | 只看該作者
地板
發(fā)表于 2025-3-22 06:04:16 | 只看該作者
5#
發(fā)表于 2025-3-22 09:50:26 | 只看該作者
Improving Model Performance, are explained. The basic idea of these two methods is on controlling the dataset, since repeated usage of the same dataset for training and validation might result in overfitting. Furthermore, regularization of the neural network model training by L-norm regularization and dropout of hidden nodes a
6#
發(fā)表于 2025-3-22 14:38:53 | 只看該作者
7#
發(fā)表于 2025-3-22 19:00:47 | 只看該作者
8#
發(fā)表于 2025-3-22 21:57:21 | 只看該作者
9#
發(fā)表于 2025-3-23 02:09:27 | 只看該作者
0921-092X ues and their applications to hydrometeorological and enviro.This book provides a step-by-step methodology and derivation of deep learning algorithms as Long Short-Term Memory (LSTM) and Convolution Neural Network (CNN), especially for estimating parameters, with back-propagation as well as examples
10#
發(fā)表于 2025-3-23 08:47:31 | 只看該作者
Erkki Tomppo,Juha Heikkinen,Nina Vainikainen to improve the speed of convergence and to find the best trajectory to reach the optimum of the employed loss function for a network. In this chapter, those methods for updating weights are explained.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 07:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
莫力| 武宣县| 盱眙县| 大港区| 广汉市| 皮山县| 四平市| 长兴县| 上栗县| 宿迁市| 忻州市| 盐山县| 清原| 嘉鱼县| 宁远县| 大余县| 黑龙江省| 丹巴县| 牡丹江市| 宁强县| 疏附县| 峨边| 和龙市| 塔河县| 富顺县| 汤阴县| 邯郸市| 沅陵县| 丹巴县| 屯留县| 郯城县| 山丹县| 洪泽县| 黄山市| 阜阳市| 建昌县| 周口市| 永春县| 镶黄旗| 宝山区| 顺平县|