找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Hydrometeorology and Environmental Science; Taesam Lee,Vijay P. Singh,Kyung Hwa Cho Book 2021 The Editor(s) (if applicab

[復制鏈接]
樓主: Extraneous
11#
發(fā)表于 2025-3-23 13:07:07 | 只看該作者
Debas Senshaw,Hossana Twinomurinziy easily getting started with Tensorflow. Keras allows employing Tensorflow without losing its flexibility and capability. In the following, two applications (i.e., temporal and spatial deep learning) are presented to illustrate how to use Keras with python.
12#
發(fā)表于 2025-3-23 17:34:29 | 只看該作者
13#
發(fā)表于 2025-3-23 18:10:14 | 只看該作者
Updating Weights, to improve the speed of convergence and to find the best trajectory to reach the optimum of the employed loss function for a network. In this chapter, those methods for updating weights are explained.
14#
發(fā)表于 2025-3-24 02:09:49 | 只看該作者
Tensorflow and Keras Programming for Deep Learning,y easily getting started with Tensorflow. Keras allows employing Tensorflow without losing its flexibility and capability. In the following, two applications (i.e., temporal and spatial deep learning) are presented to illustrate how to use Keras with python.
15#
發(fā)表于 2025-3-24 03:06:50 | 只看該作者
0921-092X their applications to hydrometeorological and environmental studies with real hydrological and environmental data. This book covers the major deep learning algorithms as Long Short-Term Memory (LSTM) and Convo978-3-030-64779-7978-3-030-64777-3Series ISSN 0921-092X Series E-ISSN 1872-4663
16#
發(fā)表于 2025-3-24 06:38:46 | 只看該作者
17#
發(fā)表于 2025-3-24 11:35:18 | 只看該作者
Book 2021ence are very rare.. .This book focuses on the explanation of deep learning techniques and their applications to hydrometeorological and environmental studies with real hydrological and environmental data. This book covers the major deep learning algorithms as Long Short-Term Memory (LSTM) and Convo
18#
發(fā)表于 2025-3-24 18:02:47 | 只看該作者
https://doi.org/10.1007/978-3-319-66387-6esented, including the definition and pros and cons of deep learning, followed by the recent applications of deep learning models in hydrological and environmental fields. The structure of the remaining chapters for this book is also explained.
19#
發(fā)表于 2025-3-24 22:02:10 | 只看該作者
20#
發(fā)表于 2025-3-25 00:50:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 16:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
榕江县| 内黄县| 通河县| 南开区| 波密县| 二连浩特市| 新密市| 黄石市| 社旗县| 库伦旗| 容城县| 攀枝花市| 伊春市| 肃宁县| 丘北县| 华池县| 图木舒克市| 朝阳市| 沧源| 绿春县| 新巴尔虎左旗| 图木舒克市| 娄底市| 郴州市| 海安县| 资中县| 宁化县| 鹤庆县| 平邑县| 云阳县| 怀柔区| 吉林省| 阿拉尔市| 丹江口市| 梁河县| 甘德县| 临夏市| 宁南县| 三门峡市| 山丹县| 岑巩县|