找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Hydrometeorology and Environmental Science; Taesam Lee,Vijay P. Singh,Kyung Hwa Cho Book 2021 The Editor(s) (if applicab

[復(fù)制鏈接]
樓主: Extraneous
31#
發(fā)表于 2025-3-26 22:52:55 | 只看該作者
32#
發(fā)表于 2025-3-27 03:04:25 | 只看該作者
33#
發(fā)表于 2025-3-27 05:50:56 | 只看該作者
34#
發(fā)表于 2025-3-27 13:26:40 | 只看該作者
Deep Learning for Spatial Datasets,Among recent developments of deep learning models, the availability of spatial datasets or images with deep learning is the most significant contribution. In this chapter, a convolutional neural network (CNN) that can analyze the spatial datasets is described. The training procedure of CNN is described with a simple example.
35#
發(fā)表于 2025-3-27 16:35:17 | 只看該作者
Environmental Applications of Deep Learning,A case study of CNN, a spatial deep learning model, is presented in this chapter for analyzing water quality with remote sensing data. Airborne remote sensing of cyanobacteria with multispectral/hyperspectral sensors is employed for input data and its water quality as output data.
36#
發(fā)表于 2025-3-27 18:29:59 | 只看該作者
37#
發(fā)表于 2025-3-27 23:50:10 | 只看該作者
https://doi.org/10.1007/978-3-319-66387-6esented, including the definition and pros and cons of deep learning, followed by the recent applications of deep learning models in hydrological and environmental fields. The structure of the remaining chapters for this book is also explained.
38#
發(fā)表于 2025-3-28 04:07:54 | 只看該作者
https://doi.org/10.1007/978-3-319-66387-6are explained, including the definition of error terms and parameter estimation procedure, since they are similarly used in deep learning models. Also, the basic concept of the time series model is also explained and this part is mainly referred to in the LSTM model chapter.
39#
發(fā)表于 2025-3-28 08:20:14 | 只看該作者
The Art or Science of Manipulation. The simplest neural network model is introduced and used in the latter part of this book. Then, a full neural network model is described. The parameter estimation procedure employing backward propagation is also explained.
40#
發(fā)表于 2025-3-28 14:28:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 16:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汉中市| 郴州市| 沅江市| 彰化市| 米脂县| 且末县| 鄂尔多斯市| 新闻| 深泽县| 邳州市| 重庆市| 杭锦旗| 清涧县| 稻城县| 桂东县| 额敏县| 潮州市| 武穴市| 饶河县| 巴青县| 曲阜市| 颍上县| 宁津县| 胶南市| 道真| 南召县| 龙南县| 五华县| 南昌市| 肥乡县| 云梦县| 卓尼县| 左贡县| 广河县| 阿拉善左旗| 佛冈县| 招远市| 聂荣县| 瑞昌市| 澄迈县| 东丽区|