找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Hydrometeorology and Environmental Science; Taesam Lee,Vijay P. Singh,Kyung Hwa Cho Book 2021 The Editor(s) (if applicab

[復(fù)制鏈接]
樓主: Extraneous
11#
發(fā)表于 2025-3-23 13:07:07 | 只看該作者
Debas Senshaw,Hossana Twinomurinziy easily getting started with Tensorflow. Keras allows employing Tensorflow without losing its flexibility and capability. In the following, two applications (i.e., temporal and spatial deep learning) are presented to illustrate how to use Keras with python.
12#
發(fā)表于 2025-3-23 17:34:29 | 只看該作者
13#
發(fā)表于 2025-3-23 18:10:14 | 只看該作者
Updating Weights, to improve the speed of convergence and to find the best trajectory to reach the optimum of the employed loss function for a network. In this chapter, those methods for updating weights are explained.
14#
發(fā)表于 2025-3-24 02:09:49 | 只看該作者
Tensorflow and Keras Programming for Deep Learning,y easily getting started with Tensorflow. Keras allows employing Tensorflow without losing its flexibility and capability. In the following, two applications (i.e., temporal and spatial deep learning) are presented to illustrate how to use Keras with python.
15#
發(fā)表于 2025-3-24 03:06:50 | 只看該作者
0921-092X their applications to hydrometeorological and environmental studies with real hydrological and environmental data. This book covers the major deep learning algorithms as Long Short-Term Memory (LSTM) and Convo978-3-030-64779-7978-3-030-64777-3Series ISSN 0921-092X Series E-ISSN 1872-4663
16#
發(fā)表于 2025-3-24 06:38:46 | 只看該作者
17#
發(fā)表于 2025-3-24 11:35:18 | 只看該作者
Book 2021ence are very rare.. .This book focuses on the explanation of deep learning techniques and their applications to hydrometeorological and environmental studies with real hydrological and environmental data. This book covers the major deep learning algorithms as Long Short-Term Memory (LSTM) and Convo
18#
發(fā)表于 2025-3-24 18:02:47 | 只看該作者
https://doi.org/10.1007/978-3-319-66387-6esented, including the definition and pros and cons of deep learning, followed by the recent applications of deep learning models in hydrological and environmental fields. The structure of the remaining chapters for this book is also explained.
19#
發(fā)表于 2025-3-24 22:02:10 | 只看該作者
20#
發(fā)表于 2025-3-25 00:50:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 07:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庄浪县| 湟中县| 高碑店市| 高台县| 扎囊县| 宁河县| 宁国市| 裕民县| 壶关县| 瑞金市| 淄博市| 射阳县| 屏东县| 柘荣县| 新巴尔虎左旗| 竹北市| 铜鼓县| 玉门市| 鄄城县| 广汉市| 石门县| 互助| 上饶市| 新龙县| 景德镇市| 方山县| 简阳市| 石棉县| 大冶市| 夏邑县| 汉沽区| 方正县| 揭东县| 达日县| 五寨县| 汝阳县| 乡城县| 全州县| 舞阳县| 鹤庆县| 报价|