找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Hydrometeorology and Environmental Science; Taesam Lee,Vijay P. Singh,Kyung Hwa Cho Book 2021 The Editor(s) (if applicab

[復(fù)制鏈接]
樓主: Extraneous
11#
發(fā)表于 2025-3-23 13:07:07 | 只看該作者
Debas Senshaw,Hossana Twinomurinziy easily getting started with Tensorflow. Keras allows employing Tensorflow without losing its flexibility and capability. In the following, two applications (i.e., temporal and spatial deep learning) are presented to illustrate how to use Keras with python.
12#
發(fā)表于 2025-3-23 17:34:29 | 只看該作者
13#
發(fā)表于 2025-3-23 18:10:14 | 只看該作者
Updating Weights, to improve the speed of convergence and to find the best trajectory to reach the optimum of the employed loss function for a network. In this chapter, those methods for updating weights are explained.
14#
發(fā)表于 2025-3-24 02:09:49 | 只看該作者
Tensorflow and Keras Programming for Deep Learning,y easily getting started with Tensorflow. Keras allows employing Tensorflow without losing its flexibility and capability. In the following, two applications (i.e., temporal and spatial deep learning) are presented to illustrate how to use Keras with python.
15#
發(fā)表于 2025-3-24 03:06:50 | 只看該作者
0921-092X their applications to hydrometeorological and environmental studies with real hydrological and environmental data. This book covers the major deep learning algorithms as Long Short-Term Memory (LSTM) and Convo978-3-030-64779-7978-3-030-64777-3Series ISSN 0921-092X Series E-ISSN 1872-4663
16#
發(fā)表于 2025-3-24 06:38:46 | 只看該作者
17#
發(fā)表于 2025-3-24 11:35:18 | 只看該作者
Book 2021ence are very rare.. .This book focuses on the explanation of deep learning techniques and their applications to hydrometeorological and environmental studies with real hydrological and environmental data. This book covers the major deep learning algorithms as Long Short-Term Memory (LSTM) and Convo
18#
發(fā)表于 2025-3-24 18:02:47 | 只看該作者
https://doi.org/10.1007/978-3-319-66387-6esented, including the definition and pros and cons of deep learning, followed by the recent applications of deep learning models in hydrological and environmental fields. The structure of the remaining chapters for this book is also explained.
19#
發(fā)表于 2025-3-24 22:02:10 | 只看該作者
20#
發(fā)表于 2025-3-25 00:50:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 07:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北碚区| 德江县| 临邑县| 蓝山县| 三台县| 体育| 监利县| 江口县| 南通市| 文登市| 吕梁市| 易门县| 江油市| 句容市| 延边| 桑日县| 琼海市| 海盐县| 台中市| 佳木斯市| 九龙城区| 民权县| 农安县| 衡阳市| 新和县| 东乡县| 周至县| 阿荣旗| 浦城县| 海南省| 新郑市| 尉犁县| 方城县| 西青区| 仁寿县| 时尚| 和田县| 大埔县| 亚东县| 镇沅| 罗甸县|