找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Biometrics; Bir Bhanu,Ajay Kumar Book 2017 Springer International Publishing AG, part of Springer Nature 2017 Deep Learn

[復(fù)制鏈接]
查看: 39525|回復(fù): 49
樓主
發(fā)表于 2025-3-21 17:49:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Learning for Biometrics
編輯Bir Bhanu,Ajay Kumar
視頻videohttp://file.papertrans.cn/265/264602/264602.mp4
概述The first dedicated work on advances in biometric identification capabilities using deep learning techniques.Covers a broad range of deep learning integrated biometric techniques, including face, fing
叢書名稱Advances in Computer Vision and Pattern Recognition
圖書封面Titlebook: Deep Learning for Biometrics;  Bir Bhanu,Ajay Kumar Book 2017 Springer International Publishing AG, part of Springer Nature 2017 Deep Learn
描述This timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also examined..Topics and features: addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities; revisits ?deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition; examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition; discusses deep learning for soft biometrics, including approaches forgesture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect
出版日期Book 2017
關(guān)鍵詞Deep Learning; Face; Fingerprint; Iris; Gait; Template Protection; Anti-Spoofing; Alexnet; CNN; RBM; Biometric
版次1
doihttps://doi.org/10.1007/978-3-319-61657-5
isbn_softcover978-3-319-87128-8
isbn_ebook978-3-319-61657-5Series ISSN 2191-6586 Series E-ISSN 2191-6594
issn_series 2191-6586
copyrightSpringer International Publishing AG, part of Springer Nature 2017
The information of publication is updating

書目名稱Deep Learning for Biometrics影響因子(影響力)




書目名稱Deep Learning for Biometrics影響因子(影響力)學(xué)科排名




書目名稱Deep Learning for Biometrics網(wǎng)絡(luò)公開度




書目名稱Deep Learning for Biometrics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning for Biometrics被引頻次




書目名稱Deep Learning for Biometrics被引頻次學(xué)科排名




書目名稱Deep Learning for Biometrics年度引用




書目名稱Deep Learning for Biometrics年度引用學(xué)科排名




書目名稱Deep Learning for Biometrics讀者反饋




書目名稱Deep Learning for Biometrics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:18:44 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:53:37 | 只看該作者
CMS-RCNN: Contextual Multi-Scale Region-Based CNN for Unconstrained Face Detectionacial periocular recognition, facial landmarking and pose estimation, facial expression recognition, 3D facial model construction, etc. Although the face detection problem has been intensely studied for decades with various commercial applications, it still meets problems in some real-world scenario
地板
發(fā)表于 2025-3-22 06:15:48 | 只看該作者
Latent Fingerprint Image Segmentation Using Deep Neural NetworkRBMs), and uses it to perform segmentation of latent fingerprint images. Artificial neural networks (ANN) are biologically inspired architectures that produce hierarchies of maps through learned weights or filters. Latent fingerprints are fingerprint impressions unintentionally left on surfaces at a
5#
發(fā)表于 2025-3-22 10:40:09 | 只看該作者
Finger Vein Identification Using Convolutional Neural Network and Supervised Discrete Hashingnal privacy and anonymity in during the identification process. The Convolutional Neural Network (CNN) has shown remarkable capability for learning biometric features that can offer robust and accurate matching. We introduce a new approach for the finger vein authentication using the CNN and supervi
6#
發(fā)表于 2025-3-22 13:09:27 | 只看該作者
7#
發(fā)表于 2025-3-22 17:21:47 | 只看該作者
8#
發(fā)表于 2025-3-23 00:23:44 | 只看該作者
9#
發(fā)表于 2025-3-23 01:45:49 | 只看該作者
10#
發(fā)表于 2025-3-23 09:14:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
卢湾区| 吉木萨尔县| 平阴县| 扶风县| 朔州市| 榆林市| 瓦房店市| 昌邑市| 筠连县| 阿坝县| 扎囊县| 长宁区| 扎鲁特旗| 西丰县| 汾阳市| 柯坪县| 日喀则市| 和硕县| 小金县| 通化县| 名山县| 从化市| 本溪市| 蒲城县| 淮安市| 宣化县| 郁南县| 凤阳县| 方山县| 宜良县| 永吉县| 曲阜市| 东港市| 石门县| 佛学| 缙云县| 敦煌市| 康保县| 四子王旗| 东海县| 舒城县|