找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Biometrics; Bir Bhanu,Ajay Kumar Book 2017 Springer International Publishing AG, part of Springer Nature 2017 Deep Learn

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:01:11 | 只看該作者
Learning Representations for Cryptographic Hash Based Face Template Protectioning ability of neural networks has enabled them to achieve state-of-the-art results in several fields, including face recognition. Consequently, biometric authentication using facial images has also benefited from this, with deep convolutional neural networks pushing the matching performance numbers
12#
發(fā)表于 2025-3-23 17:20:46 | 只看該作者
Deep Triplet Embedding Representations for Liveness Detectionr an attacker it is relatively easy to build a fake replica of a legitimate finger and apply it directly to the sensor, thereby fooling the system by declaring its corresponding identity. In order to ensure that the declared identity is genuine and it corresponds to the individual present at the tim
13#
發(fā)表于 2025-3-23 20:57:52 | 只看該作者
14#
發(fā)表于 2025-3-23 23:34:04 | 只看該作者
15#
發(fā)表于 2025-3-24 02:35:48 | 只看該作者
16#
發(fā)表于 2025-3-24 06:40:36 | 只看該作者
Gender Classification from NIR Iris Images Using Deep Learning methods to separate the gender-from-iris images even when the amount of learning data is limited, using an unsupervised stage with Restricted Boltzmann Machine (RBM) and a supervised stage using a Convolutional Neural Network (CNN).
17#
發(fā)表于 2025-3-24 12:13:55 | 只看該作者
18#
發(fā)表于 2025-3-24 16:06:21 | 只看該作者
19#
發(fā)表于 2025-3-24 19:37:35 | 只看該作者
Book 2017ual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also exa
20#
發(fā)表于 2025-3-25 00:51:52 | 只看該作者
2191-6586 arning integrated biometric techniques, including face, fingThis timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 17:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
峨眉山市| 兴隆县| 名山县| 元谋县| 化德县| 宁城县| 梓潼县| 长岭县| 江门市| 衢州市| 彭山县| 台安县| 琼结县| 石林| 常熟市| 望江县| 白朗县| 乌鲁木齐县| 招远市| 沙雅县| 庆安县| 富民县| 通江县| 东光县| 乌兰浩特市| 文成县| 江孜县| 班戈县| 金沙县| 吐鲁番市| 光山县| 乐安县| 澜沧| 荔波县| 武功县| 赫章县| 乐陵市| 浦北县| 广丰县| 依兰县| 大余县|