找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Biometrics; Bir Bhanu,Ajay Kumar Book 2017 Springer International Publishing AG, part of Springer Nature 2017 Deep Learn

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:01:11 | 只看該作者
Learning Representations for Cryptographic Hash Based Face Template Protectioning ability of neural networks has enabled them to achieve state-of-the-art results in several fields, including face recognition. Consequently, biometric authentication using facial images has also benefited from this, with deep convolutional neural networks pushing the matching performance numbers
12#
發(fā)表于 2025-3-23 17:20:46 | 只看該作者
Deep Triplet Embedding Representations for Liveness Detectionr an attacker it is relatively easy to build a fake replica of a legitimate finger and apply it directly to the sensor, thereby fooling the system by declaring its corresponding identity. In order to ensure that the declared identity is genuine and it corresponds to the individual present at the tim
13#
發(fā)表于 2025-3-23 20:57:52 | 只看該作者
14#
發(fā)表于 2025-3-23 23:34:04 | 只看該作者
15#
發(fā)表于 2025-3-24 02:35:48 | 只看該作者
16#
發(fā)表于 2025-3-24 06:40:36 | 只看該作者
Gender Classification from NIR Iris Images Using Deep Learning methods to separate the gender-from-iris images even when the amount of learning data is limited, using an unsupervised stage with Restricted Boltzmann Machine (RBM) and a supervised stage using a Convolutional Neural Network (CNN).
17#
發(fā)表于 2025-3-24 12:13:55 | 只看該作者
18#
發(fā)表于 2025-3-24 16:06:21 | 只看該作者
19#
發(fā)表于 2025-3-24 19:37:35 | 只看該作者
Book 2017ual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also exa
20#
發(fā)表于 2025-3-25 00:51:52 | 只看該作者
2191-6586 arning integrated biometric techniques, including face, fingThis timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 17:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桐乡市| 化隆| 泽库县| 曲阜市| 简阳市| 武山县| 湖南省| 乡宁县| 周至县| 浦东新区| 克什克腾旗| 英德市| 寿阳县| 宜都市| 合阳县| 海原县| 舞钢市| 兴宁市| 镇雄县| 白银市| 陆良县| 玉林市| 儋州市| 宁波市| 瑞安市| 合作市| 绥德县| 宝兴县| 巫山县| 南安市| 内丘县| 岚皋县| 响水县| 如皋市| 运城市| 绥化市| 岑巩县| 罗田县| 石林| 乐陵市| 银川市|