找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Biometrics; Bir Bhanu,Ajay Kumar Book 2017 Springer International Publishing AG, part of Springer Nature 2017 Deep Learn

[復制鏈接]
21#
發(fā)表于 2025-3-25 06:55:22 | 只看該作者
2191-6586 sture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect 978-3-319-87128-8978-3-319-61657-5Series ISSN 2191-6586 Series E-ISSN 2191-6594
22#
發(fā)表于 2025-3-25 10:47:34 | 只看該作者
Iain C. Scotchman,L. Hywel Johnesmponent and the region-of-interest (RoI) detection component. However, far apart of that network, there are two main contributions in our proposed network that play a significant role to achieve the state-of-the-art performance in face detection. First, the multi-scale information is grouped both in
23#
發(fā)表于 2025-3-25 13:37:06 | 只看該作者
24#
發(fā)表于 2025-3-25 15:49:17 | 只看該作者
25#
發(fā)表于 2025-3-25 22:40:05 | 只看該作者
26#
發(fā)表于 2025-3-26 00:34:07 | 只看該作者
Some Characteristics of Sandy Plaggen Soilsural networks, a deep learning framework that leverages both the spatial (depth) and temporal (optical flow) information of a video sequence. First, we evaluate the generalization performance during testing of our approach against gestures of users that have not been seen during training. Then, we s
27#
發(fā)表于 2025-3-26 08:22:02 | 只看該作者
https://doi.org/10.1007/978-3-642-51349-7mugshot database with 400?K images under occlusion and low-resolution settings, compared to the one undergone traditional training. In addition, our progressively trained network is sufficiently generalized so that it can be robust to occlusions of arbitrary types and at arbitrary locations, as well
28#
發(fā)表于 2025-3-26 08:48:41 | 只看該作者
https://doi.org/10.1007/978-3-642-51349-7 and detection based on deep learning. In particular, we will present deep convolutional neural network-based methods for automatic matching of tattoo images based on the AlexNet and Siamese networks. Furthermore, we will show that rather than using a simple contrastive loss function, triplet loss f
29#
發(fā)表于 2025-3-26 16:25:47 | 只看該作者
30#
發(fā)表于 2025-3-26 17:28:47 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 15:58
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
罗定市| 商城县| 望都县| 杨浦区| 正阳县| 大田县| 上栗县| 双柏县| 分宜县| 仪陇县| 广平县| 浦北县| 巴彦县| 北川| 全南县| 南充市| 昌吉市| 新宁县| 黔南| 增城市| 扬中市| 合山市| 商南县| 岐山县| 安达市| 金阳县| 沙雅县| 肇东市| 如皋市| 大同县| 鲁山县| 昌平区| 婺源县| 罗甸县| 永清县| 扬州市| 屯昌县| 米易县| 台江县| 客服| 兴安盟|