找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Generative Models, and Data Augmentation, Labelling, and Imperfections; First Workshop, DGM4 Sandy Engelhardt,Ilkay Oksuz,Yuan Xue Con

[復(fù)制鏈接]
樓主: 貪求
41#
發(fā)表于 2025-3-28 15:41:04 | 只看該作者
42#
發(fā)表于 2025-3-28 22:47:33 | 只看該作者
https://doi.org/10.1007/978-3-662-43839-8combined with other tools to remove artifacts or fill in occluded regions, allowing better understanding of the images from doctors or downstream algorithms. However, current methods that solve the problem usually pay no attention to the underlying pixel-intensity distributions in the missing input
43#
發(fā)表于 2025-3-29 02:59:51 | 只看該作者
David M. Lehmann,Viktor M. Saleniusons (classification), as biomedical images naturally contain image-wise labels in many scenarios. The current weakly supervised learning algorithms from the computer vision community are largely designed for focal objects (e.g., dogs and cats). However, such algorithms are not optimized for diffuse
44#
發(fā)表于 2025-3-29 03:30:03 | 只看該作者
45#
發(fā)表于 2025-3-29 07:15:25 | 只看該作者
Helena M. Müller,Melanie Reuter-Oppermannan open issue. This is especially true in medical imaging where GAN application is at its infancy, and where the use of scores based on models trained on datasets far away from the medical domain, e.g. the Inception score, can lead to misleading results. To overcome such limitations we propose a fra
46#
發(fā)表于 2025-3-29 14:31:30 | 只看該作者
47#
發(fā)表于 2025-3-29 17:58:01 | 只看該作者
https://doi.org/10.1007/978-3-031-61175-9is a complex minimally invasive procedure which is facing the problem of data availability and data privacy. Therefore, the simulation cases are widely used to form surgery training and planning. However, the cross-domain gap may affect the performance significantly as Deep Learning methods rely hea
48#
發(fā)表于 2025-3-29 21:14:48 | 只看該作者
49#
發(fā)表于 2025-3-30 01:30:29 | 只看該作者
50#
發(fā)表于 2025-3-30 05:14:19 | 只看該作者
Sandeep Purao,Arvind Karunakaranlems but it usually requires a large number of the annotated datasets for the training stage. In addition, traditional methods usually fail for the landmark detection of fine objects. In this paper, we tackle the issue of automatic landmark annotation in 3D volumetric images from a single example ba
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
池州市| 茂名市| 松滋市| 巴青县| 蕲春县| 天长市| 达孜县| 高青县| 长治县| 读书| 宕昌县| 怀柔区| 博白县| 冷水江市| 锡林浩特市| 岚皋县| 牙克石市| 邹平县| 曲麻莱县| 大余县| 闽清县| 太仓市| 北票市| 靖边县| 余庆县| 丘北县| 西宁市| 宝兴县| 冷水江市| 昌图县| 香格里拉县| 高陵县| 依安县| 嘉义县| 民权县| 宝应县| 汉川市| 霍林郭勒市| 曲松县| 台江县| 思茅市|