找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Generative Models, and Data Augmentation, Labelling, and Imperfections; First Workshop, DGM4 Sandy Engelhardt,Ilkay Oksuz,Yuan Xue Con

[復(fù)制鏈接]
樓主: 貪求
21#
發(fā)表于 2025-3-25 05:03:03 | 只看該作者
22#
發(fā)表于 2025-3-25 09:07:32 | 只看該作者
Conditional Generation of Medical Images via Disentangled Adversarial Inferencee variables. We conduct extensive qualitative and quantitative assessments on two publicly available medical imaging datasets (LIDC and HAM10000) and test for conditional image generation and style-content disentanglement. We also show that our proposed model (DRAI) achieves the best disentanglement score and has the best overall performance.
23#
發(fā)表于 2025-3-25 13:12:07 | 只看該作者
24#
發(fā)表于 2025-3-25 16:52:57 | 只看該作者
25#
發(fā)表于 2025-3-25 21:32:22 | 只看該作者
One-Shot Learning for Landmarks Detectionthm in order to perform automatic organ localization and landmark matching. We investigated both qualitatively and quantitatively the performance of the proposed approach on clinical temporal bone CT volumes. The results show that our one-shot learning scheme converges well and leads to a good accuracy of the landmark positions.
26#
發(fā)表于 2025-3-26 02:02:35 | 只看該作者
27#
發(fā)表于 2025-3-26 06:03:08 | 只看該作者
Conception of Design Science and its Methods latent space to generate images from a broader domain than what was observed. We show that using our generative approach for ultrasound data augmentation and domain adaptation during training improves the performance of the resulting deep learning models, even when tested within the observed domain.
28#
發(fā)表于 2025-3-26 12:20:38 | 只看該作者
Helena M. Müller,Melanie Reuter-Oppermanndel is trained to generate fake brain connectivity matrices, which are expected to reflect the latent distribution and topological features of the real brain network data. Numerical results show that the BrainNetGAN outperforms the benchmarking algorithms in augmenting the brain networks for AD classification tasks.
29#
發(fā)表于 2025-3-26 14:58:07 | 只看該作者
30#
發(fā)表于 2025-3-26 19:44:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宽甸| 长春市| 辉县市| 大新县| 柳州市| 梨树县| 崇文区| 清镇市| 工布江达县| 雷州市| 岳阳市| 桂阳县| 台山市| 呼伦贝尔市| 绿春县| 开阳县| 宝坻区| 子长县| 隆昌县| 临朐县| 新蔡县| 巨野县| 许昌县| 永丰县| 五莲县| 文水县| 临潭县| 随州市| 辽中县| 玉门市| 伊春市| 云龙县| 五河县| 蒲江县| 建瓯市| 永福县| 额济纳旗| 南澳县| 娄底市| 邵阳市| 德州市|