找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; DASFAA 2018 Internat Chengfei Liu,Lei Zou,Jianxin Li Conference proceedings 2018 Springer Inter

[復(fù)制鏈接]
樓主: 日月等
41#
發(fā)表于 2025-3-28 16:08:41 | 只看該作者
Enabling Temporal Reasoning for Fact Statements: A Web-Based Approachrate their risk estimation into the process of probability computation. Our experiments on real data shows that the proposed approach can achieve considerable improvements in performance over 2 state-of-the-art alternatives, and the proposed risk reduction technique can effectively improve validity time reasoning’s precision.
42#
發(fā)表于 2025-3-28 19:03:01 | 只看該作者
43#
發(fā)表于 2025-3-28 23:08:54 | 只看該作者
44#
發(fā)表于 2025-3-29 06:18:53 | 只看該作者
45#
發(fā)表于 2025-3-29 09:34:14 | 只看該作者
https://doi.org/10.1007/978-3-662-55612-2features through multi-type pooling. Experiments show that the CNN with multi-convolution and multi-type pooling (CNN-MCMP) obtains better performance on text classification compared with both the shallow machine-learning models and other CNN architectures.
46#
發(fā)表于 2025-3-29 12:29:36 | 只看該作者
https://doi.org/10.1007/978-3-662-55612-2sed hash strategy to ensure both the partition balancing and less partitioning time. Especially, existing trajectory data are not required to be repartitioned when new data arrive. Extensive experiments on three real data sets demonstrated that the performance of the proposed technique outperformed other partitioning techniques.
47#
發(fā)表于 2025-3-29 19:30:12 | 只看該作者
Constructing Separable Objective Functionsser-based collaborative filtering algorithm (CFC), and validates the validity of the algorithm in the prototype of the proposed system. The experimental results show that the recommendation algorithms can significantly improve accuracy of the recommendation.
48#
發(fā)表于 2025-3-29 20:26:58 | 只看該作者
49#
發(fā)表于 2025-3-30 02:11:46 | 只看該作者
https://doi.org/10.1007/978-1-349-25337-1ted SPARQL engine (e.g. TriAD) in an adaptive way and evaluate FedQL on a real-world dataset. The experimental results show that FedQL is efficient and effective in processing RDF stream and relational data in a federal way.
50#
發(fā)表于 2025-3-30 04:49:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 15:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
瑞金市| 大港区| 黄平县| 临泉县| 宁都县| 凤翔县| 监利县| 兴山县| 永寿县| 赤城县| 临沂市| 富民县| 卢龙县| 南通市| 芦溪县| 西平县| 搜索| 右玉县| 铜山县| 嘉祥县| 漯河市| 都江堰市| 镇雄县| 阳曲县| 抚宁县| 黔江区| 郯城县| 洛浦县| 镇坪县| 怀化市| 西峡县| 伊金霍洛旗| 临江市| 公主岭市| 崇信县| 新密市| 迭部县| 内黄县| 沙洋县| 宜兰县| 同仁县|