找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; DASFAA 2018 Internat Chengfei Liu,Lei Zou,Jianxin Li Conference proceedings 2018 Springer Inter

[復(fù)制鏈接]
樓主: 日月等
51#
發(fā)表于 2025-3-30 10:06:29 | 只看該作者
Time-Based Trajectory Data Partitioning for Efficient Range Querysed hash strategy to ensure both the partition balancing and less partitioning time. Especially, existing trajectory data are not required to be repartitioned when new data arrive. Extensive experiments on three real data sets demonstrated that the performance of the proposed technique outperformed other partitioning techniques.
52#
發(fā)表于 2025-3-30 15:21:10 | 只看該作者
53#
發(fā)表于 2025-3-30 18:05:39 | 只看該作者
Secure Computation of Pearson Correlation Coefficients for High-Quality Data Analyticsnts. For the secure Pearson correlation computation, we first propose an advanced solution by exploiting the secure scalar product. We then present an approximate solution by adopting the lower-dimensional transformation. We finally empirically show that the proposed solutions are practical methods in terms of execution time and data quality.
54#
發(fā)表于 2025-3-30 23:51:31 | 只看該作者
55#
發(fā)表于 2025-3-31 01:25:49 | 只看該作者
Extracting Schemas from Large Graphs with Utility Function and Parallelizationation cost. In this paper, we propose a schema extraction algorithm based on (a) a novel utility function called local utility function and (b) parallelization. Experimental results show that our algorithm can extract schemas from graphs more efficiently without losing quality of schemas.
56#
發(fā)表于 2025-3-31 07:41:27 | 只看該作者
57#
發(fā)表于 2025-3-31 12:53:45 | 只看該作者
Convolutional Neural Networks for Text Classification with Multi-size Convolution and Multi-type Pootakes too much time and energy to extract features of data, but only obtains poor performance. Recently, deep learning methods are widely used in text classification and result in good performance. In this paper, we propose a Convolutional Neural Network (CNN) with multi-size convolution and multi-t
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 22:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绩溪县| 丰都县| 霍邱县| 辽阳市| 涿州市| 延庆县| 延安市| 林甸县| 平乡县| 武功县| 镇康县| 芦溪县| 阳江市| 宜黄县| 韶山市| 团风县| 日照市| 安远县| 清涧县| 蒲江县| 常熟市| 扬州市| 南部县| 清丰县| 闸北区| 溧水县| 永福县| 英德市| 茌平县| 高尔夫| 怀远县| 南皮县| 江油市| 昆明市| 田阳县| 满城县| 孟州市| 宁安市| 建阳市| 滕州市| 屯留县|