找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; DASFAA 2018 Internat Chengfei Liu,Lei Zou,Jianxin Li Conference proceedings 2018 Springer Inter

[復制鏈接]
樓主: 日月等
51#
發(fā)表于 2025-3-30 10:06:29 | 只看該作者
Time-Based Trajectory Data Partitioning for Efficient Range Querysed hash strategy to ensure both the partition balancing and less partitioning time. Especially, existing trajectory data are not required to be repartitioned when new data arrive. Extensive experiments on three real data sets demonstrated that the performance of the proposed technique outperformed other partitioning techniques.
52#
發(fā)表于 2025-3-30 15:21:10 | 只看該作者
53#
發(fā)表于 2025-3-30 18:05:39 | 只看該作者
Secure Computation of Pearson Correlation Coefficients for High-Quality Data Analyticsnts. For the secure Pearson correlation computation, we first propose an advanced solution by exploiting the secure scalar product. We then present an approximate solution by adopting the lower-dimensional transformation. We finally empirically show that the proposed solutions are practical methods in terms of execution time and data quality.
54#
發(fā)表于 2025-3-30 23:51:31 | 只看該作者
55#
發(fā)表于 2025-3-31 01:25:49 | 只看該作者
Extracting Schemas from Large Graphs with Utility Function and Parallelizationation cost. In this paper, we propose a schema extraction algorithm based on (a) a novel utility function called local utility function and (b) parallelization. Experimental results show that our algorithm can extract schemas from graphs more efficiently without losing quality of schemas.
56#
發(fā)表于 2025-3-31 07:41:27 | 只看該作者
57#
發(fā)表于 2025-3-31 12:53:45 | 只看該作者
Convolutional Neural Networks for Text Classification with Multi-size Convolution and Multi-type Pootakes too much time and energy to extract features of data, but only obtains poor performance. Recently, deep learning methods are widely used in text classification and result in good performance. In this paper, we propose a Convolutional Neural Network (CNN) with multi-size convolution and multi-t
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-30 15:56
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
德州市| 张北县| 娄烦县| 冷水江市| 金溪县| 延安市| 峨眉山市| 延边| 穆棱市| 新龙县| 互助| 琼结县| 晋城| 廊坊市| 盐津县| 林周县| 仁寿县| 信阳市| 武川县| 柞水县| 富顺县| 新竹县| 南充市| 塔城市| 公安县| 清涧县| 西丰县| 华蓥市| 托里县| 武清区| 舞钢市| 大竹县| 钟山县| 腾冲县| 浮山县| 兴安盟| 奉化市| 封丘县| 马尔康县| 昂仁县| 疏勒县|