找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining Techniques in Sensor Networks; Summarization, Inter Annalisa Appice,Anna Ciampi,Donato Malerba Book 2014 The Author(s) 2014 Ano

[復(fù)制鏈接]
查看: 10467|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:41:02 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Data Mining Techniques in Sensor Networks
副標(biāo)題Summarization, Inter
編輯Annalisa Appice,Anna Ciampi,Donato Malerba
視頻videohttp://file.papertrans.cn/263/262910/262910.mp4
概述Introduces the trend cluster, a recently defined spatio-temporal pattern, and its use in summarizing, interpolating and identifying anomalies in sensor networks.Illustrates the application of trend cl
叢書(shū)名稱(chēng)SpringerBriefs in Computer Science
圖書(shū)封面Titlebook: Data Mining Techniques in Sensor Networks; Summarization, Inter Annalisa Appice,Anna Ciampi,Donato Malerba Book 2014 The Author(s) 2014 Ano
描述Sensor networks comprise of a number of sensors installed across a spatially distributed network, which gather information and periodically feed a central server with the measured data. The server monitors the data, issues possible alarms and computes fast aggregates. As data analysis requests may concern both present and past data, the server is forced to store the entire stream. But the limited storage capacity of a server may reduce the amount of data stored on the disk. One solution is to compute summaries of the data as it arrives, and to use these summaries to interpolate the real data. This work introduces a recently defined spatio-temporal pattern, called trend cluster, to summarize, interpolate and identify anomalies in a sensor network. As an example, the application of trend cluster discovery to monitor the efficiency of photovoltaic power plants is discussed. The work closes with remarks on new possibilities for surveillance enabled by recent developments in sensing technology.
出版日期Book 2014
關(guān)鍵詞Anomaly Detection; Clustering; Data Mining; Interpolation; Sensor Data; Spatio-Temporal Data Mining; Strea
版次1
doihttps://doi.org/10.1007/978-1-4471-5454-9
isbn_softcover978-1-4471-5453-2
isbn_ebook978-1-4471-5454-9Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s) 2014
The information of publication is updating

書(shū)目名稱(chēng)Data Mining Techniques in Sensor Networks影響因子(影響力)




書(shū)目名稱(chēng)Data Mining Techniques in Sensor Networks影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Data Mining Techniques in Sensor Networks網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Data Mining Techniques in Sensor Networks網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Data Mining Techniques in Sensor Networks被引頻次




書(shū)目名稱(chēng)Data Mining Techniques in Sensor Networks被引頻次學(xué)科排名




書(shū)目名稱(chēng)Data Mining Techniques in Sensor Networks年度引用




書(shū)目名稱(chēng)Data Mining Techniques in Sensor Networks年度引用學(xué)科排名




書(shū)目名稱(chēng)Data Mining Techniques in Sensor Networks讀者反饋




書(shū)目名稱(chēng)Data Mining Techniques in Sensor Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:36:31 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:25:28 | 只看該作者
地板
發(fā)表于 2025-3-22 08:30:57 | 只看該作者
Sensor Data Surveillance,continuous surveillance of this unbounded amount of georeferenced data. Trend cluster discovery, as a spatiotemporal aggregate operator, may play a crucial role in the surveillance process of the sensor data. We describe a computation-preserving algorithm, which employs an incremental learning strat
5#
發(fā)表于 2025-3-22 10:09:05 | 只看該作者
Book 2014twork. As an example, the application of trend cluster discovery to monitor the efficiency of photovoltaic power plants is discussed. The work closes with remarks on new possibilities for surveillance enabled by recent developments in sensing technology.
6#
發(fā)表于 2025-3-22 15:16:12 | 只看該作者
7#
發(fā)表于 2025-3-22 20:31:17 | 只看該作者
Volker Stich,Gerhard Gudergan,Violett Zellerg the . approach, while the latter uses .. Both have been adapted to a sensor network scenario. The proposed techniques have been evaluated in a large air-climate sensor network. The empirical study compares the accuracy and efficiency of both techniques.
8#
發(fā)表于 2025-3-22 21:37:49 | 只看該作者
9#
發(fā)表于 2025-3-23 04:41:09 | 只看該作者
10#
發(fā)表于 2025-3-23 09:10:31 | 只看該作者
Missing Sensor Data Interpolation,g the . approach, while the latter uses .. Both have been adapted to a sensor network scenario. The proposed techniques have been evaluated in a large air-climate sensor network. The empirical study compares the accuracy and efficiency of both techniques.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定西市| 东源县| 东乌珠穆沁旗| 宁陵县| 佛学| 平阳县| 朝阳市| 蓬安县| 德安县| 高清| 伊宁市| 台前县| 娱乐| 西充县| 夏河县| 内黄县| 长寿区| 搜索| 五寨县| 嘉鱼县| 那坡县| 黔西县| 静乐县| 藁城市| 额敏县| 玉屏| 民和| 海口市| 神农架林区| 旬邑县| 嘉禾县| 盘山县| 安图县| 平陆县| 永清县| 陈巴尔虎旗| 车致| 防城港市| 肃北| 含山县| 双流县|