找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining Techniques in Sensor Networks; Summarization, Inter Annalisa Appice,Anna Ciampi,Donato Malerba Book 2014 The Author(s) 2014 Ano

[復(fù)制鏈接]
樓主: 手或腳
11#
發(fā)表于 2025-3-23 13:34:25 | 只看該作者
12#
發(fā)表于 2025-3-23 14:27:54 | 只看該作者
https://doi.org/10.1007/978-3-319-99127-6In this chapter, we describe the specific characteristics of sensor data and sensor networks. Furthermore, we identify the most promising streaming models, which can be embedded in intelligent sensor platforms and used to mine real-time data for a variety of analytical insights.
13#
發(fā)表于 2025-3-23 22:02:20 | 只看該作者
14#
發(fā)表于 2025-3-23 23:21:09 | 只看該作者
Sensor Data Surveillance,egy to continuously maintain . trend clusters across a sensor network. The analysis of trend clusters, which are discovered at the consecutive sliding windows, is useful to look for possible changes in the data, as well as to produce forecasts of the future.
15#
發(fā)表于 2025-3-24 04:20:50 | 只看該作者
Sensor Networks and Data Streams: Basics,In this chapter, we describe the specific characteristics of sensor data and sensor networks. Furthermore, we identify the most promising streaming models, which can be embedded in intelligent sensor platforms and used to mine real-time data for a variety of analytical insights.
16#
發(fā)表于 2025-3-24 08:40:11 | 只看該作者
17#
發(fā)表于 2025-3-24 13:33:32 | 只看該作者
Annalisa Appice,Anna Ciampi,Donato MalerbaIntroduces the trend cluster, a recently defined spatio-temporal pattern, and its use in summarizing, interpolating and identifying anomalies in sensor networks.Illustrates the application of trend cl
18#
發(fā)表于 2025-3-24 16:04:24 | 只看該作者
SpringerBriefs in Computer Sciencehttp://image.papertrans.cn/d/image/262910.jpg
19#
發(fā)表于 2025-3-24 20:13:09 | 只看該作者
Data Mining Techniques in Sensor Networks978-1-4471-5454-9Series ISSN 2191-5768 Series E-ISSN 2191-5776
20#
發(fā)表于 2025-3-25 01:18:17 | 只看該作者
https://doi.org/10.1007/978-3-319-99127-6 environmental phenomena that can be detected, monitored, and reacted to. Another important aspect is the real-time data delivery of novel platforms. In this chapter, we describe the specific characteristics of sensor data and sensor networks. Furthermore, we identify the most promising streaming mo
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
夏河县| 偏关县| 蓝山县| 调兵山市| 浏阳市| 嘉义县| 元阳县| 酒泉市| 土默特左旗| 井陉县| 长宁区| 马山县| 滦南县| 司法| 集安市| 迁西县| 海南省| 施甸县| 兴安盟| 昌乐县| 化州市| 屏东市| 平谷区| 巴彦县| 华安县| 宜丰县| 林西县| 长阳| 曲阳县| 安新县| 博野县| 临漳县| 米林县| 宜宾市| 太仆寺旗| 西林县| 保德县| 巴青县| 吴川市| 榕江县| 新乡县|