找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Mining Techniques in Sensor Networks; Summarization, Inter Annalisa Appice,Anna Ciampi,Donato Malerba Book 2014 The Author(s) 2014 Ano

[復(fù)制鏈接]
樓主: 手或腳
11#
發(fā)表于 2025-3-23 13:34:25 | 只看該作者
12#
發(fā)表于 2025-3-23 14:27:54 | 只看該作者
https://doi.org/10.1007/978-3-319-99127-6In this chapter, we describe the specific characteristics of sensor data and sensor networks. Furthermore, we identify the most promising streaming models, which can be embedded in intelligent sensor platforms and used to mine real-time data for a variety of analytical insights.
13#
發(fā)表于 2025-3-23 22:02:20 | 只看該作者
14#
發(fā)表于 2025-3-23 23:21:09 | 只看該作者
Sensor Data Surveillance,egy to continuously maintain . trend clusters across a sensor network. The analysis of trend clusters, which are discovered at the consecutive sliding windows, is useful to look for possible changes in the data, as well as to produce forecasts of the future.
15#
發(fā)表于 2025-3-24 04:20:50 | 只看該作者
Sensor Networks and Data Streams: Basics,In this chapter, we describe the specific characteristics of sensor data and sensor networks. Furthermore, we identify the most promising streaming models, which can be embedded in intelligent sensor platforms and used to mine real-time data for a variety of analytical insights.
16#
發(fā)表于 2025-3-24 08:40:11 | 只看該作者
17#
發(fā)表于 2025-3-24 13:33:32 | 只看該作者
Annalisa Appice,Anna Ciampi,Donato MalerbaIntroduces the trend cluster, a recently defined spatio-temporal pattern, and its use in summarizing, interpolating and identifying anomalies in sensor networks.Illustrates the application of trend cl
18#
發(fā)表于 2025-3-24 16:04:24 | 只看該作者
SpringerBriefs in Computer Sciencehttp://image.papertrans.cn/d/image/262910.jpg
19#
發(fā)表于 2025-3-24 20:13:09 | 只看該作者
Data Mining Techniques in Sensor Networks978-1-4471-5454-9Series ISSN 2191-5768 Series E-ISSN 2191-5776
20#
發(fā)表于 2025-3-25 01:18:17 | 只看該作者
https://doi.org/10.1007/978-3-319-99127-6 environmental phenomena that can be detected, monitored, and reacted to. Another important aspect is the real-time data delivery of novel platforms. In this chapter, we describe the specific characteristics of sensor data and sensor networks. Furthermore, we identify the most promising streaming mo
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗田县| 丰都县| 古交市| 科尔| 高碑店市| 新郑市| 临澧县| 云林县| 枣庄市| 尖扎县| 广昌县| 临泽县| 湘西| 缙云县| 勃利县| 宝应县| 泰来县| 武陟县| 凌云县| 汉源县| 鹿邑县| 炉霍县| 泸溪县| 邛崃市| 通辽市| 常宁市| 白河县| 江都市| 合水县| 祁门县| 前郭尔| 泸溪县| 油尖旺区| 涿鹿县| 长子县| 观塘区| 平邑县| 宝兴县| 林口县| 武宣县| 沾化县|