找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Curves and Surfaces for Computer Graphics; David Salomon Textbook 2006 Springer-Verlag New York 2006 Animation.Interpolation.Mathematica.a

[復(fù)制鏈接]
樓主: Enkephalin
11#
發(fā)表于 2025-3-23 13:15:43 | 只看該作者
https://doi.org/10.1007/978-981-99-1685-6wever, as the discussion in Section 1.5 (especially exercise 1.20) illustrates, a curve based on a high-degree poly- nomial may wiggle wildly and its shape may be far from what the user has in mind. In practical work we are normally interested in a smooth, tight curve that proceeds from point to poi
12#
發(fā)表于 2025-3-23 17:43:03 | 只看該作者
https://doi.org/10.1007/978-981-99-1685-6 notably R. Riesenfeld. They have been studied extensively, have been considerably extended since the 1970s, and much is currently known about them. The designation ?B“ stands for Basis, so the full name of this approach to curve and surface design is the basis spline. This chapter discusses the imp
13#
發(fā)表于 2025-3-23 21:43:21 | 只看該作者
https://doi.org/10.1007/978-981-99-1685-6es that lead to the same result. A third approach to curve and surface design, employing the process of . (also known as . or .), is the topic of this chapter. Refinement is a general approach that can produce Bézier curves, B-spline curves, and other types of curves. Its main advantage is that it c
14#
發(fā)表于 2025-3-23 23:11:47 | 只看該作者
15#
發(fā)表于 2025-3-24 03:39:25 | 只看該作者
https://doi.org/10.1007/0-387-28452-4Animation; Interpolation; Mathematica; architecture; computer; computer graphics; computer science
16#
發(fā)表于 2025-3-24 08:12:54 | 只看該作者
978-1-4419-2023-2Springer-Verlag New York 2006
17#
發(fā)表于 2025-3-24 13:33:28 | 只看該作者
Subdivision Methods,es that lead to the same result. A third approach to curve and surface design, employing the process of . (also known as . or .), is the topic of this chapter. Refinement is a general approach that can produce Bézier curves, B-spline curves, and other types of curves. Its main advantage is that it can easily be extended to surfaces.
18#
發(fā)表于 2025-3-24 15:17:26 | 只看該作者
19#
發(fā)表于 2025-3-24 20:07:03 | 只看該作者
20#
發(fā)表于 2025-3-25 02:26:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奈曼旗| 桦川县| 临沂市| 石屏县| 尼木县| 同江市| 肇州县| 安乡县| 淳化县| 浙江省| 通州市| 五台县| 多伦县| 酒泉市| 永仁县| 乡城县| 锦屏县| 河北区| 盐池县| 鹤山市| 厦门市| 尚义县| 平昌县| 辽宁省| 通渭县| 平潭县| 西畴县| 白河县| 缙云县| 永城市| 定州市| 公安县| 合阳县| 青龙| 赤峰市| 怀化市| 阿克陶县| 金溪县| 永康市| 同江市| 碌曲县|