找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Current Trends in Computational Modeling for Drug Discovery; Supratik Kar,Jerzy Leszczynski Book 2023 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
樓主: 口語
41#
發(fā)表于 2025-3-28 17:06:01 | 只看該作者
https://doi.org/10.1007/978-3-658-10567-9gical and pathological disease conditions. HDAC6 and HDAC10 are involved in different signaling pathways associated with several neurological disorders, various cancers at early as well as advanced stages, rare diseases, immunological conditions, etc. Thus, targeting these two enzymes has been found
42#
發(fā)表于 2025-3-28 19:18:42 | 只看該作者
43#
發(fā)表于 2025-3-29 00:37:49 | 只看該作者
https://doi.org/10.1007/978-3-658-10567-9antiviral drugs for treatment. Since the 1950s, new viral illnesses including AIDS, Hepatitis, and coronavirus infections like SARS, MERS, and COVID-19 have periodically emerged, posing a challenge to the development of antiviral drugs. The creation of computer models is an interactive, iterative pr
44#
發(fā)表于 2025-3-29 05:50:09 | 只看該作者
https://doi.org/10.1007/978-3-658-10567-9igh fatality rate. With time, the world has faced numerous outbreaks in various regions such as Malaysia, Bangladesh, Philippines, and India. In this chapter, we have summarized experimentally tested antivirals and computational approaches to predict potential inhibitors against NiV. Various studies
45#
發(fā)表于 2025-3-29 10:12:18 | 只看該作者
https://doi.org/10.1007/978-3-658-10567-9nti-HIV drugs remains a major cause of concern, necessitating a regimen of highly active antiretroviral therapy (HAART), which consists of a combination of multiple drugs for long-term clinical benefit. Clearly, the rapid development of novel molecules that can help change the present regimen to new
46#
發(fā)表于 2025-3-29 15:08:18 | 只看該作者
47#
發(fā)表于 2025-3-29 16:43:02 | 只看該作者
48#
發(fā)表于 2025-3-29 21:28:56 | 只看該作者
https://doi.org/10.1007/978-3-658-10567-9pects like reproducibility, less ethical complications, no animal use and reduced time are some of the reasons why?researchers nowadays are shifting toward the in silico approaches for prediction. Quantitative Structure–Activity Relationship (QSAR) is one of the most commonly used in silico approach
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 02:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霍城县| 昆山市| 织金县| 施秉县| 景东| 黔西| 电白县| 霍山县| 台江县| 桂东县| 社会| 永宁县| 日照市| 弥渡县| 新密市| 奇台县| 汪清县| 马山县| 都匀市| 九寨沟县| 乌拉特前旗| 辽阳市| 洛隆县| 平罗县| 安多县| 渝北区| 易门县| 久治县| 台北市| 景洪市| 广河县| 册亨县| 樟树市| 穆棱市| 墨江| 济南市| 栾城县| 江门市| 新民市| 蓬安县| 靖宇县|