找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Current Trends in Computational Modeling for Drug Discovery; Supratik Kar,Jerzy Leszczynski Book 2023 The Editor(s) (if applicable) and Th

[復制鏈接]
樓主: 口語
21#
發(fā)表于 2025-3-25 03:57:25 | 只看該作者
https://doi.org/10.1007/978-3-658-10567-9r dynamics, integrated structure- and network-based approach, Drug–target–drug network-based approach, etc. In conclusion, this work will be helpful for the researchers in examining antivirals against NiV.
22#
發(fā)表于 2025-3-25 10:29:06 | 只看該作者
23#
發(fā)表于 2025-3-25 15:33:26 | 只看該作者
https://doi.org/10.1007/978-3-658-10567-9thus can efficiently be used for data gap filling. The authors at the DTC Laboratory have developed a Java-based Read-Across tool (.) which utilizes three different similarity-based approaches (Euclidean Distance-based, Gaussian Kernel Similarity-based and Laplacian Kernel Similarity-based) for the
24#
發(fā)表于 2025-3-25 18:21:41 | 只看該作者
25#
發(fā)表于 2025-3-25 20:51:46 | 只看該作者
26#
發(fā)表于 2025-3-26 02:20:33 | 只看該作者
SBDD and Its Challenges,, novel, potent, and safe modulators. It is a joint effort from structural biologists and computational scientists, which considers various limitations of the techniques and suitably guides drug designers. Identifying a novel, potent, and safe drug-like molecule is a long challenging path, and throu
27#
發(fā)表于 2025-3-26 05:43:45 | 只看該作者
28#
發(fā)表于 2025-3-26 09:56:29 | 只看該作者
29#
發(fā)表于 2025-3-26 14:52:10 | 只看該作者
30#
發(fā)表于 2025-3-26 18:17:05 | 只看該作者
Targeted Computational Approaches to Identify Potential Inhibitors for Nipah Virus,igh fatality rate. With time, the world has faced numerous outbreaks in various regions such as Malaysia, Bangladesh, Philippines, and India. In this chapter, we have summarized experimentally tested antivirals and computational approaches to predict potential inhibitors against NiV. Various studies
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 19:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
色达县| 莱阳市| 金华市| 双城市| 乌兰浩特市| 上饶市| 宜昌市| 健康| 通渭县| 巫溪县| 花莲县| 南投市| 垫江县| 和平区| 称多县| 上思县| 高青县| 桃园县| 娄底市| 黑河市| 博客| 长沙县| 深州市| 博白县| 九江市| 平凉市| 龙泉市| 西和县| 鄂托克旗| 墨竹工卡县| 建宁县| 泾阳县| 黑水县| 平定县| 永新县| 兴国县| 常州市| 枣阳市| 玛多县| 红桥区| 静海县|