找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Current Trends in Computational Modeling for Drug Discovery; Supratik Kar,Jerzy Leszczynski Book 2023 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
查看: 39601|回復(fù): 47
樓主
發(fā)表于 2025-3-21 16:20:42 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Current Trends in Computational Modeling for Drug Discovery
編輯Supratik Kar,Jerzy Leszczynski
視頻videohttp://file.papertrans.cn/242/241437/241437.mp4
概述Discusses fundamental tools, algorithms and methods of computational modeling.Presents applications of molecular modeling to drug design.Features contributions from leading experts in the field
叢書名稱Challenges and Advances in Computational Chemistry and Physics
圖書封面Titlebook: Current Trends in Computational Modeling for Drug Discovery;  Supratik Kar,Jerzy Leszczynski Book 2023 The Editor(s) (if applicable) and Th
描述This contributed volume offers a comprehensive discussion on how to design and discover pharmaceuticals using computational modeling techniques. The different chapters deal with the classical and most advanced techniques, theories, protocols, databases, and tools employed in computer-aided drug design (CADD) covering diverse therapeutic classes. Multiple components of Structure-Based Drug Discovery (SBDD) along with its workflow and associated challenges are presented while potential leads for Alzheimer’s disease (AD), antiviral agents, anti-human immunodeficiency virus (HIV) drugs, and leads for Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) disease are discussed in detail. Computational toxicological aspects in drug design and discovery, screening adverse effects, and existing or future in silico tools are highlighted, while a novel in silico tool, RASAR, which can be a major technique for small to big datasets when not much experimental data are present, is presented. The book also introduces the reader to the major drug databases covering drug molecules, chemicals, therapeutic targets, metabolomics, and peptides, which are great resources for drug discovery employing
出版日期Book 2023
關(guān)鍵詞Drug design and discovery; QSAR Model; Computational Chemistry; Medicinal Chemistry; Computational Biolo
版次1
doihttps://doi.org/10.1007/978-3-031-33871-7
isbn_softcover978-3-031-33873-1
isbn_ebook978-3-031-33871-7Series ISSN 2542-4491 Series E-ISSN 2542-4483
issn_series 2542-4491
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Current Trends in Computational Modeling for Drug Discovery影響因子(影響力)




書目名稱Current Trends in Computational Modeling for Drug Discovery影響因子(影響力)學(xué)科排名




書目名稱Current Trends in Computational Modeling for Drug Discovery網(wǎng)絡(luò)公開度




書目名稱Current Trends in Computational Modeling for Drug Discovery網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Current Trends in Computational Modeling for Drug Discovery被引頻次




書目名稱Current Trends in Computational Modeling for Drug Discovery被引頻次學(xué)科排名




書目名稱Current Trends in Computational Modeling for Drug Discovery年度引用




書目名稱Current Trends in Computational Modeling for Drug Discovery年度引用學(xué)科排名




書目名稱Current Trends in Computational Modeling for Drug Discovery讀者反饋




書目名稱Current Trends in Computational Modeling for Drug Discovery讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:11:16 | 只看該作者
https://doi.org/10.1007/978-3-658-10567-9y the long process of drug design and discovery, and to optimize the selection of preferable features present in a new pharmaceutical. In this new vision, a more holistic approach can apply multiple methodologies and not only the screening of the adverse effects.
板凳
發(fā)表于 2025-3-22 00:42:25 | 只看該作者
Computational Toxicological Aspects in Drug Design and Discovery, Screening Adverse Effects,y the long process of drug design and discovery, and to optimize the selection of preferable features present in a new pharmaceutical. In this new vision, a more holistic approach can apply multiple methodologies and not only the screening of the adverse effects.
地板
發(fā)表于 2025-3-22 06:02:05 | 只看該作者
5#
發(fā)表于 2025-3-22 09:13:35 | 只看該作者
6#
發(fā)表于 2025-3-22 13:12:39 | 只看該作者
7#
發(fā)表于 2025-3-22 20:40:01 | 只看該作者
https://doi.org/10.1007/978-3-658-10567-9ter, we provide an overview of computational SBDD workflow, and the various challenges associated with it. We also discuss strategies that could be adopted to tackle the challenges by making the best use of available information.
8#
發(fā)表于 2025-3-23 00:15:10 | 只看該作者
9#
發(fā)表于 2025-3-23 02:30:28 | 只看該作者
SBDD and Its Challenges,ter, we provide an overview of computational SBDD workflow, and the various challenges associated with it. We also discuss strategies that could be adopted to tackle the challenges by making the best use of available information.
10#
發(fā)表于 2025-3-23 05:32:44 | 只看該作者
In Silico Discovery of Class IIb HDAC Inhibitors: The State of Art,in silico studies including the virtual screening approaches have been implemented to design HDAC6 and HDAC10 inhibitors. In addition, the interactions of class IIb HDACs with their inhibitors are also highlighted extensively to get a detail insight. This chapter offers understanding for designing newer class IIb HDAC inhibitors in future.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 17:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新和县| 寻乌县| 确山县| 塘沽区| 全椒县| 夹江县| 定边县| 东宁县| 保亭| 星座| 奎屯市| 麟游县| 鲁甸县| 赤城县| 吉木乃县| 绵阳市| 内乡县| 寿阳县| 阜宁县| 五指山市| 禹州市| 夏河县| 潜山县| 江津市| 江阴市| 汉源县| 罗平县| 伊宁县| 尚义县| 清苑县| 铅山县| 汝南县| 浮梁县| 曲松县| 连南| 新化县| 都匀市| 固阳县| 神木县| 马公市| 宽城|