找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Creativity and Giftedness; Interdisciplinary pe Roza Leikin,Bharath Sriraman Book 2017 Springer International Publishing Switzerland 2017 C

[復(fù)制鏈接]
查看: 7184|回復(fù): 60
樓主
發(fā)表于 2025-3-21 20:01:14 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Creativity and Giftedness
副標(biāo)題Interdisciplinary pe
編輯Roza Leikin,Bharath Sriraman
視頻videohttp://file.papertrans.cn/240/239563/239563.mp4
概述Discusses two constructs that were overlooked in mathematics education research for a long time.Conveys the state of the art of research in mathematical creativity and giftedness.Includes commentaries
叢書名稱Advances in Mathematics Education
圖書封面Titlebook: Creativity and Giftedness; Interdisciplinary pe Roza Leikin,Bharath Sriraman Book 2017 Springer International Publishing Switzerland 2017 C
描述This volume provides readers with a broad view on the variety of issues related to the educational research and practices in the field of Creativity in Mathematics and Mathematical Giftedness.?The book explores (a) the relationship between creativity and giftedness; ?(b) empirical work with high ability (or gifted) students in the classroom and its implications for teaching mathematics; (c) interdisciplinary work which views creativity as a complex phenomena that cannot be understood from within the borders of disciplines, i.e., to present research and theorists from disciplines such as neuroscience and complexity theory; and (d) findings from psychology that pertain the creatively gifted students.As a whole, this volume brings together perspectives from mathematics educators, psychologists, neuroscientists, and teachers to present a collection of empirical, theoretical and philosophical works that address the complexity of mathematical creativity and giftedness, its origins, nature, nurture and ways forward.?In keeping with the spirit of the series, the anthology substantially builds on previous ZDM volumes on interdisciplinarity (2009), creativity and giftedness (2013).
出版日期Book 2017
關(guān)鍵詞Complexity theory; Exceptional thinking processes; Gifted students; High ability students; Krutetskian a
版次1
doihttps://doi.org/10.1007/978-3-319-38840-3
isbn_softcover978-3-319-81760-6
isbn_ebook978-3-319-38840-3Series ISSN 1869-4918 Series E-ISSN 1869-4926
issn_series 1869-4918
copyrightSpringer International Publishing Switzerland 2017
The information of publication is updating

書目名稱Creativity and Giftedness影響因子(影響力)




書目名稱Creativity and Giftedness影響因子(影響力)學(xué)科排名




書目名稱Creativity and Giftedness網(wǎng)絡(luò)公開度




書目名稱Creativity and Giftedness網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Creativity and Giftedness被引頻次




書目名稱Creativity and Giftedness被引頻次學(xué)科排名




書目名稱Creativity and Giftedness年度引用




書目名稱Creativity and Giftedness年度引用學(xué)科排名




書目名稱Creativity and Giftedness讀者反饋




書目名稱Creativity and Giftedness讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:34:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:40:15 | 只看該作者
地板
發(fā)表于 2025-3-22 07:49:49 | 只看該作者
is chapter, we discuss and demonstrate how different kinds of constraints affect early competency in mathematics and later creativity in composition. Applications of our constraint model to other do mains are also suggested.
5#
發(fā)表于 2025-3-22 09:53:12 | 只看該作者
6#
發(fā)表于 2025-3-22 16:34:07 | 只看該作者
Reliability in Regional Drought Studiestical discussions, sometimes instigating such discussions, and sometimes reflecting already existing conflicts. Without attempting an exhaustive analysis, the author describes certain episodes, aspects, and slogans of such political battles, while posing some questions for further study.
7#
發(fā)表于 2025-3-22 19:55:56 | 只看該作者
8#
發(fā)表于 2025-3-22 22:06:17 | 只看該作者
Constraints, Competency and Creativity in the Classroomis chapter, we discuss and demonstrate how different kinds of constraints affect early competency in mathematics and later creativity in composition. Applications of our constraint model to other do mains are also suggested.
9#
發(fā)表于 2025-3-23 04:25:59 | 只看該作者
10#
發(fā)表于 2025-3-23 08:48:45 | 只看該作者
Mathematically Gifted Education: Some Political Questionstical discussions, sometimes instigating such discussions, and sometimes reflecting already existing conflicts. Without attempting an exhaustive analysis, the author describes certain episodes, aspects, and slogans of such political battles, while posing some questions for further study.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 03:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东港市| 湟中县| 普兰县| 梅河口市| 潼关县| 浪卡子县| 东莞市| 瓮安县| 衡山县| 和龙市| 广南县| 汝城县| 会泽县| 卢氏县| 中阳县| 大渡口区| 和龙市| 双峰县| 云和县| 田阳县| 荥阳市| 霍林郭勒市| 湟源县| 泰来县| 宿州市| 万州区| 巴南区| 开平市| 武川县| 安泽县| 龙南县| 博罗县| 通城县| 峨眉山市| 南和县| 攀枝花市| 金阳县| 桦甸市| 东港市| 福贡县| 高清|