找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Convexity and Discrete Geometry Including Graph Theory; Mulhouse, France, Se Karim Adiprasito,Imre Bárány,Costin Vilcu Conference proceedin

[復(fù)制鏈接]
樓主: 恰當(dāng)
11#
發(fā)表于 2025-3-23 12:06:15 | 只看該作者
12#
發(fā)表于 2025-3-23 15:15:19 | 只看該作者
13#
發(fā)表于 2025-3-23 18:34:25 | 只看該作者
Promotion of Self-Regulated Learning,s of square orders and related them to complex equiangular tight frames. It is shown that for any odd integer . such that ., . prime, . non-negative integer, on the one hand there exists a (2.,?.) complex equiangular tight frame and for any . there exists a . complex equiangular tight frame dependin
14#
發(fā)表于 2025-3-24 00:58:31 | 只看該作者
Informal Education: Museums, Organizations, as abstract point-line configurations in the sense of Branko Grünbaum’s book from 2009 [.], .-spheres of questionable convex .-polytopes, or regular maps have been studied in view of their possible geometric realization. We present selected open and solved problems from these areas. Oriented matroi
15#
發(fā)表于 2025-3-24 05:58:48 | 只看該作者
16#
發(fā)表于 2025-3-24 09:54:49 | 只看該作者
978-3-319-80292-3Springer International Publishing Switzerland 2016
17#
發(fā)表于 2025-3-24 10:53:56 | 只看該作者
Convexity and Discrete Geometry Including Graph Theory978-3-319-28186-5Series ISSN 2194-1009 Series E-ISSN 2194-1017
18#
發(fā)表于 2025-3-24 17:44:37 | 只看該作者
https://doi.org/10.1007/978-3-531-90638-6s called a Steinhaus surface if . is a single-valued involution. We prove that any convex polyhedron has an open and dense set of points . admitting a unique antipode ., which in turn admits a unique antipode ., distinct from .. In particular, no convex polyhedron is Steinhaus.
19#
發(fā)表于 2025-3-24 21:46:06 | 只看該作者
20#
發(fā)表于 2025-3-24 23:58:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 19:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朝阳市| 缙云县| 酉阳| 秭归县| 揭阳市| 尼木县| 德安县| 阜宁县| 河南省| 叶城县| 偏关县| 罗山县| 隆子县| 兰州市| 太谷县| 东海县| 南木林县| 高邑县| 陆良县| 福安市| 页游| 上虞市| 襄汾县| 东港市| 汨罗市| 崇左市| 余江县| 灵武市| 喀喇| 武鸣县| 沙田区| 长寿区| 寿宁县| 福泉市| 陆川县| 临漳县| 荆州市| 镶黄旗| 普格县| 襄垣县| 芜湖县|