找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Convexity and Discrete Geometry Including Graph Theory; Mulhouse, France, Se Karim Adiprasito,Imre Bárány,Costin Vilcu Conference proceedin

[復(fù)制鏈接]
樓主: 恰當(dāng)
21#
發(fā)表于 2025-3-25 05:48:40 | 只看該作者
Springer Proceedings in Mathematics & Statisticshttp://image.papertrans.cn/c/image/237858.jpg
22#
發(fā)表于 2025-3-25 11:02:39 | 只看該作者
,Aufbau der Studie — Theorie und Methode,Tudor Zamfirescu was born as what is called in mathematics a counter-example. He is Roumanian, but he was born in Sweden (on 20 April 1944).
23#
發(fā)表于 2025-3-25 12:12:28 | 只看該作者
24#
發(fā)表于 2025-3-25 16:58:56 | 只看該作者
25#
發(fā)表于 2025-3-25 22:13:32 | 只看該作者
,Geschlecht, M?nnlichkeit und Vaterschaft,It is proved that every convex body in the plane has a point such that the union of the body and its image under reflection in the point is convex. If the body is not centrally symmetric, then it has, in fact, three affinely independent points with this property.
26#
發(fā)表于 2025-3-26 01:01:25 | 只看該作者
A Science of Mathematical Education,In this paper we shall improve the known bounds for the Helly dimension of the .-sum of centrally symmetric compact convex bodies and, using this bounds, we give the complete list of Hanner polytopes with Helly dimension at most 5.
27#
發(fā)表于 2025-3-26 05:14:43 | 只看該作者
28#
發(fā)表于 2025-3-26 08:37:27 | 只看該作者
29#
發(fā)表于 2025-3-26 15:37:29 | 只看該作者
30#
發(fā)表于 2025-3-26 19:09:38 | 只看該作者
Hamiltonicity in ,-tree-Halin GraphsA .. is a planar graph ., where . is a forest with at most . components and . is a cycle, such that .(.) is the set of all leaves of ., . bounds a face and no vertex has degree 2. This is a generalization of Halin graphs. We are investigating here the hamiltonicity and traceability of .-tree-Halin graphs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 23:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
祁门县| 大兴区| 武功县| 江津市| 永和县| 习水县| 惠来县| 嘉祥县| 方山县| 靖安县| 洛浦县| 荆州市| 贞丰县| 安塞县| 贡觉县| 赤水市| 黄梅县| 许昌县| 潍坊市| 舞阳县| 游戏| 甘肃省| 永善县| 建始县| 龙井市| 太康县| 定远县| 石棉县| 古田县| 天祝| 临高县| 仙居县| 佳木斯市| 运城市| 新昌县| 涟水县| 宣汉县| 顺平县| 咸宁市| 富川| 济阳县|