找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convexity and Discrete Geometry Including Graph Theory; Mulhouse, France, Se Karim Adiprasito,Imre Bárány,Costin Vilcu Conference proceedin

[復制鏈接]
樓主: 恰當
21#
發(fā)表于 2025-3-25 05:48:40 | 只看該作者
Springer Proceedings in Mathematics & Statisticshttp://image.papertrans.cn/c/image/237858.jpg
22#
發(fā)表于 2025-3-25 11:02:39 | 只看該作者
,Aufbau der Studie — Theorie und Methode,Tudor Zamfirescu was born as what is called in mathematics a counter-example. He is Roumanian, but he was born in Sweden (on 20 April 1944).
23#
發(fā)表于 2025-3-25 12:12:28 | 只看該作者
24#
發(fā)表于 2025-3-25 16:58:56 | 只看該作者
25#
發(fā)表于 2025-3-25 22:13:32 | 只看該作者
,Geschlecht, M?nnlichkeit und Vaterschaft,It is proved that every convex body in the plane has a point such that the union of the body and its image under reflection in the point is convex. If the body is not centrally symmetric, then it has, in fact, three affinely independent points with this property.
26#
發(fā)表于 2025-3-26 01:01:25 | 只看該作者
A Science of Mathematical Education,In this paper we shall improve the known bounds for the Helly dimension of the .-sum of centrally symmetric compact convex bodies and, using this bounds, we give the complete list of Hanner polytopes with Helly dimension at most 5.
27#
發(fā)表于 2025-3-26 05:14:43 | 只看該作者
28#
發(fā)表于 2025-3-26 08:37:27 | 只看該作者
29#
發(fā)表于 2025-3-26 15:37:29 | 只看該作者
30#
發(fā)表于 2025-3-26 19:09:38 | 只看該作者
Hamiltonicity in ,-tree-Halin GraphsA .. is a planar graph ., where . is a forest with at most . components and . is a cycle, such that .(.) is the set of all leaves of ., . bounds a face and no vertex has degree 2. This is a generalization of Halin graphs. We are investigating here the hamiltonicity and traceability of .-tree-Halin graphs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 19:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
白河县| 林西县| 江北区| 定日县| 广东省| 乐至县| 仙桃市| 乐都县| 巴马| 通化县| 博乐市| 尉氏县| 贵德县| 砀山县| 兴隆县| 遂川县| 偃师市| 东方市| 彩票| 海宁市| 从化市| 应城市| 措美县| 嘉峪关市| 富裕县| 长春市| 东台市| 沙田区| 新竹市| 于田县| 原平市| 华安县| 常熟市| 乌审旗| 峨边| 株洲县| 临朐县| 泗洪县| 绥棱县| 九龙城区| 芦山县|