找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuous-Time Markov Chains; An Applications-Orie William J. Anderson Book 1991 Springer-Verlag New York Inc. 1991 Branching process.Mark

[復制鏈接]
樓主: SORB
31#
發(fā)表于 2025-3-26 22:48:17 | 只看該作者
32#
發(fā)表于 2025-3-27 02:50:06 | 只看該作者
Transition Functions and Resolvents,called a continuous-time parameter Markov chain if for any finite set . of “times,” and corresponding set . of states in . such that ., we have . Equation (1.1) is called the Markov property. If for all ., . such that . and all .,. ε . the conditional probability . appearing on the right-hand side o
33#
發(fā)表于 2025-3-27 06:32:37 | 只看該作者
34#
發(fā)表于 2025-3-27 12:01:56 | 只看該作者
Examples of Continuous-Time Markov Chains,ion, and we can solve either the backward or forward equations to find it. Let us consider, for example, the backward equations.Suppose that . is similar to the . x . matrix .; that is, that.for some . x . invertible matrix .. Then . satisfies.The point is . can in general be a simpler matrix than .
35#
發(fā)表于 2025-3-27 16:41:28 | 只看該作者
36#
發(fā)表于 2025-3-27 20:12:32 | 只看該作者
Birth and Death Processes,ent the birth and death .-matrix of (3.2.1) given by.,where . is a set of birth-death parameters. Note again that . is conservative if and only if . = 0, and that if .. > 0, we are allowing the process to jump from state 0 directly to an absorbing state which, given the context here, is most conveni
37#
發(fā)表于 2025-3-28 01:51:37 | 只看該作者
38#
發(fā)表于 2025-3-28 02:58:47 | 只看該作者
39#
發(fā)表于 2025-3-28 09:42:55 | 只看該作者
40#
發(fā)表于 2025-3-28 10:55:28 | 只看該作者
Book 2008. This book is essential to those with an interest in 3DTV-related research or applications, and also of interest to those who, while not directly working on 3DTV, work in areas which developments in 3DTV may touch, such as multimedia, computer games, virtual reality, medical imaging, and scientific
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-17 22:43
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
邵武市| 苏尼特左旗| 普兰县| 北票市| 芦溪县| 集安市| 香港| 通州区| 淮阳县| 资阳市| 惠来县| 增城市| 万安县| 临城县| 蒲江县| 逊克县| 吴川市| 古交市| 崇义县| 彭阳县| 河南省| 昌都县| 普格县| 兰坪| 东海县| 阿合奇县| 遂宁市| 新宾| 张北县| 龙山县| 子长县| 昌黎县| 海城市| 武宁县| 罗源县| 宁化县| 海安县| 沽源县| 潞西市| 湖北省| 太康县|