找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuous-Time Markov Chains; An Applications-Orie William J. Anderson Book 1991 Springer-Verlag New York Inc. 1991 Branching process.Mark

[復(fù)制鏈接]
樓主: SORB
11#
發(fā)表于 2025-3-23 12:37:10 | 只看該作者
Continuous-Time Markov Chains978-1-4612-3038-0Series ISSN 0172-7397 Series E-ISSN 2197-568X
12#
發(fā)表于 2025-3-23 16:45:15 | 只看該作者
13#
發(fā)表于 2025-3-23 18:30:53 | 只看該作者
14#
發(fā)表于 2025-3-24 00:19:36 | 只看該作者
https://doi.org/10.1007/978-3-322-94806-9called a continuous-time parameter Markov chain if for any finite set . of “times,” and corresponding set . of states in . such that ., we have . Equation (1.1) is called the Markov property. If for all ., . such that . and all .,. ε . the conditional probability . appearing on the right-hand side o
15#
發(fā)表于 2025-3-24 05:02:23 | 只看該作者
Produktion und Unternehmungsformen such a stochastic process is uniquely determined by the one-step transition matrix . whose .,.th component is ., and an initial distribution vector ., whose .th component is .. Every probability involving the random variables of this chain can be determined from the finite-dimensional distributions
16#
發(fā)表于 2025-3-24 09:35:51 | 只看該作者
17#
發(fā)表于 2025-3-24 10:50:05 | 只看該作者
Renate Neub?umer,Brigitte Hewelpect convergence of .(.) to the ergodic limits π.? We shall study two special types of ergodicity, the so-called strong ergodicity and exponential ergodicity. Of course, our main interest is always to characterize these properties in terms of the . matrix.
18#
發(fā)表于 2025-3-24 17:37:12 | 只看該作者
,Konstruktive Ger?uschminderungsma?nahmen,ent the birth and death .-matrix of (3.2.1) given by.,where . is a set of birth-death parameters. Note again that . is conservative if and only if . = 0, and that if .. > 0, we are allowing the process to jump from state 0 directly to an absorbing state which, given the context here, is most conveni
19#
發(fā)表于 2025-3-24 21:01:29 | 只看該作者
20#
發(fā)表于 2025-3-25 02:24:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 02:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
启东市| 乌拉特后旗| 玉田县| 济源市| 凤台县| 庆阳市| 祁连县| 新昌县| 云林县| 揭东县| 灵丘县| 汝阳县| 大同市| 寿宁县| 虹口区| 石柱| 文登市| 汽车| 雅安市| 张家界市| 缙云县| 澄城县| 定南县| 灵寿县| 靖安县| 凤城市| 玉山县| 齐河县| 嘉鱼县| 五莲县| 平阳县| 平远县| 余庆县| 收藏| 临沭县| 闽侯县| 株洲市| 桐城市| 岢岚县| 泰和县| 北京市|