找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuous-Time Markov Chains; An Applications-Orie William J. Anderson Book 1991 Springer-Verlag New York Inc. 1991 Branching process.Mark

[復制鏈接]
樓主: SORB
21#
發(fā)表于 2025-3-25 04:07:48 | 只看該作者
22#
發(fā)表于 2025-3-25 08:19:41 | 只看該作者
978-1-4612-7772-9Springer-Verlag New York Inc. 1991
23#
發(fā)表于 2025-3-25 12:32:35 | 只看該作者
https://doi.org/10.1007/978-3-322-94827-4In this chapter, we will be looking more closely at questions of nonuniqueness and uniqueness of .-functions. However, it will be more convenient to work with the Laplace transforms of the quantities involved, particularly the resolvent function in place of the transition function, rather than in the time domain as we did in Chapter 2.
24#
發(fā)表于 2025-3-25 16:34:02 | 只看該作者
25#
發(fā)表于 2025-3-25 20:36:29 | 只看該作者
,übungsaufgaben und L?sungswege,A transition function . is said to be . if there exists a set . of strictly positive numbers such that. for all . and ..If, in addition, we have Σ.. = 1, then . is called symmetric. In either case, the set . is called the symmetrizing measure.
26#
發(fā)表于 2025-3-26 01:09:34 | 只看該作者
Teubner Studienbücher MathematikIn this section, we investigate processes with state space . which are basically birth and death processes, but which also allow downward jumps called ., of arbitrary size.
27#
發(fā)表于 2025-3-26 07:25:56 | 只看該作者
28#
發(fā)表于 2025-3-26 12:30:33 | 只看該作者
Classification of States and Invariant Measures,Let ., be a standard transition function, and let . denote a continuous-time Markov chain with state space ., and having . as its transition function.
29#
發(fā)表于 2025-3-26 14:53:03 | 只看該作者
Reversibility, Monotonicity, and Other Properties,A transition function . is said to be . if there exists a set . of strictly positive numbers such that. for all . and ..If, in addition, we have Σ.. = 1, then . is called symmetric. In either case, the set . is called the symmetrizing measure.
30#
發(fā)表于 2025-3-26 19:45:46 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 18:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新乡市| 绵阳市| 霍林郭勒市| 酒泉市| 彭阳县| 汶川县| 儋州市| 进贤县| 渭南市| 安宁市| 平舆县| 孝义市| 安塞县| 岳池县| 政和县| 星座| 武鸣县| 弋阳县| 保德县| 科技| 邛崃市| 涡阳县| 陆河县| 苍南县| 泸州市| 金塔县| 马公市| 姜堰市| 从江县| 新民市| 永寿县| 泗阳县| 马鞍山市| 建始县| 敦煌市| 阿瓦提县| 巴东县| 余干县| 紫金县| 江陵县| 玛纳斯县|