找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computerized Systems for Diagnosis and Treatment of COVID-19; Joao Alexandre Lobo Marques,Simon James Fong Book 2023 The Editor(s) (if app

[復(fù)制鏈接]
樓主: Constrict
31#
發(fā)表于 2025-3-27 00:40:15 | 只看該作者
32#
發(fā)表于 2025-3-27 02:54:33 | 只看該作者
33#
發(fā)表于 2025-3-27 09:22:29 | 只看該作者
https://doi.org/10.1007/978-3-211-49855-2ight and supine. We processed the surface ECG to obtain QRS complexes and HRV indices for RR series, including a total of 43 features. We compared 19 machine learning classification algorithms that yielded different approaches explained in a methodology session.
34#
發(fā)表于 2025-3-27 12:44:20 | 只看該作者
,Classification of?Severity of?COVID-19 Patients Based on?the?Heart Rate Variability,ight and supine. We processed the surface ECG to obtain QRS complexes and HRV indices for RR series, including a total of 43 features. We compared 19 machine learning classification algorithms that yielded different approaches explained in a methodology session.
35#
發(fā)表于 2025-3-27 15:29:38 | 只看該作者
Book 2023 to the high infection and mortality rates, and the multiple consequences of the virusinfection in the human body, the challenges were vast and enormous. These necessitated the integration of different disciplines to address the problems. As a global response, researchers across academia and industr
36#
發(fā)表于 2025-3-27 20:45:30 | 只看該作者
https://doi.org/10.1007/978-981-16-1899-4systems based on Artificial Intelligence are in fact ready to effectively help on clinical processes, from the perspective of the model proposed by NASA, Technology Readiness Levels (TRL). Finally, two trends are presented with increased necessity of computerized systems to deal with the Long Covid
37#
發(fā)表于 2025-3-28 01:21:51 | 只看該作者
https://doi.org/10.1007/978-3-8350-9260-0oise and misinterpretation caused by other structures eventually present in the images. This chapter presents an AI-based system for lung segmentation in X-ray images using a U-net CNN model. The system’s performance was evaluated using metrics such as cross-entropy, dice coefficient, and Mean IoU o
38#
發(fā)表于 2025-3-28 05:54:30 | 只看該作者
https://doi.org/10.1007/978-3-8350-9260-0rated satisfactory accuracy, precision, recall, and specificity performance. On the one hand, the Mobilenet architecture outperformed the other CNNs, achieving excellent results for the evaluated metrics. On the other hand, Squeezenet presented a regular result in terms of recall. In medical diagnos
39#
發(fā)表于 2025-3-28 10:11:38 | 只看該作者
40#
發(fā)表于 2025-3-28 10:34:57 | 只看該作者
https://doi.org/10.1007/978-3-8350-9260-0pproach in clinical practice. Because of COVID-19 CT scans’ medical characteristics, the lesions are widely spread and display a range of local aspects. Using deep learning to diagnose directly is difficult. In COVID-19, a Transformer and Convolutional Neural Network module are presented to extract
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 08:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
喀什市| 衡阳市| 松溪县| 绵竹市| 政和县| 宝鸡市| 通化县| 黄平县| 简阳市| 平泉县| 宝坻区| 南京市| 临猗县| 江源县| 林周县| 永德县| 广水市| 东辽县| 旅游| 榕江县| 浮山县| 上犹县| 渭源县| 紫云| 深圳市| 武清区| 鱼台县| 奎屯市| 庆云县| 巫山县| 宁波市| 双柏县| 元谋县| 乌什县| 资阳市| 长沙市| 崇阳县| 荣成市| 巴彦县| 静安区| 河津市|