找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computerized Systems for Diagnosis and Treatment of COVID-19; Joao Alexandre Lobo Marques,Simon James Fong Book 2023 The Editor(s) (if app

[復制鏈接]
樓主: Constrict
41#
發(fā)表于 2025-3-28 15:02:05 | 只看該作者
42#
發(fā)表于 2025-3-28 20:18:07 | 只看該作者
https://doi.org/10.1007/978-981-33-4952-0ws of 1 second segments in 6 ways of windowing signal analysis crops were evaluated employing statistical analysis. Three categories of outcomes are considered for the patient status: Low, Moderate, and Severe, and four combinations for classification scenarios are tested: ?(., ., .) and 1 Multi-cla
43#
發(fā)表于 2025-3-29 01:58:14 | 只看該作者
44#
發(fā)表于 2025-3-29 05:15:27 | 只看該作者
Technology Developments to Face the COVID-19 Pandemic: Advances, Challenges, and Trends,systems based on Artificial Intelligence are in fact ready to effectively help on clinical processes, from the perspective of the model proposed by NASA, Technology Readiness Levels (TRL). Finally, two trends are presented with increased necessity of computerized systems to deal with the Long Covid
45#
發(fā)表于 2025-3-29 08:31:49 | 只看該作者
Lung Segmentation of Chest X-Rays Using Unet Convolutional Networks,oise and misinterpretation caused by other structures eventually present in the images. This chapter presents an AI-based system for lung segmentation in X-ray images using a U-net CNN model. The system’s performance was evaluated using metrics such as cross-entropy, dice coefficient, and Mean IoU o
46#
發(fā)表于 2025-3-29 12:21:32 | 只看該作者
47#
發(fā)表于 2025-3-29 15:57:06 | 只看該作者
X-Ray Machine Learning Classification with VGG-16 for Feature Extraction,r presented the best performance metrics for Covid-19 classification, achieving 90% accuracy, 97.5% of Specificity, 82.5% of Sensitivity, 89.6% of Geometric mean, and 90% for the AUC metric. On the other hand, the Nearest Centroid (NC) classifier presented poor sensitivity and geometric mean results
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 08:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
辽阳县| 萍乡市| 清涧县| 宁津县| 利川市| 垣曲县| 陇南市| 镇安县| 珠海市| 永城市| 乌鲁木齐县| 台中市| 青川县| 缙云县| 深泽县| 罗田县| 建水县| 南川市| 宣威市| 汝阳县| 宜阳县| 扶沟县| 开江县| 岑溪市| 托克托县| 通州区| 磐安县| 织金县| 阳城县| 田阳县| 临潭县| 鄂伦春自治旗| 光山县| 沂南县| 当阳市| 庆云县| 克什克腾旗| 黔东| 灵丘县| 南通市| 高淳县|