找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computerized Systems for Diagnosis and Treatment of COVID-19; Joao Alexandre Lobo Marques,Simon James Fong Book 2023 The Editor(s) (if app

[復(fù)制鏈接]
樓主: Constrict
41#
發(fā)表于 2025-3-28 15:02:05 | 只看該作者
42#
發(fā)表于 2025-3-28 20:18:07 | 只看該作者
https://doi.org/10.1007/978-981-33-4952-0ws of 1 second segments in 6 ways of windowing signal analysis crops were evaluated employing statistical analysis. Three categories of outcomes are considered for the patient status: Low, Moderate, and Severe, and four combinations for classification scenarios are tested: ?(., ., .) and 1 Multi-cla
43#
發(fā)表于 2025-3-29 01:58:14 | 只看該作者
44#
發(fā)表于 2025-3-29 05:15:27 | 只看該作者
Technology Developments to Face the COVID-19 Pandemic: Advances, Challenges, and Trends,systems based on Artificial Intelligence are in fact ready to effectively help on clinical processes, from the perspective of the model proposed by NASA, Technology Readiness Levels (TRL). Finally, two trends are presented with increased necessity of computerized systems to deal with the Long Covid
45#
發(fā)表于 2025-3-29 08:31:49 | 只看該作者
Lung Segmentation of Chest X-Rays Using Unet Convolutional Networks,oise and misinterpretation caused by other structures eventually present in the images. This chapter presents an AI-based system for lung segmentation in X-ray images using a U-net CNN model. The system’s performance was evaluated using metrics such as cross-entropy, dice coefficient, and Mean IoU o
46#
發(fā)表于 2025-3-29 12:21:32 | 只看該作者
47#
發(fā)表于 2025-3-29 15:57:06 | 只看該作者
X-Ray Machine Learning Classification with VGG-16 for Feature Extraction,r presented the best performance metrics for Covid-19 classification, achieving 90% accuracy, 97.5% of Specificity, 82.5% of Sensitivity, 89.6% of Geometric mean, and 90% for the AUC metric. On the other hand, the Nearest Centroid (NC) classifier presented poor sensitivity and geometric mean results
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 11:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汕尾市| 武汉市| 滁州市| 萨嘎县| 屏东市| 广丰县| 碌曲县| 囊谦县| 广元市| 砀山县| 哈巴河县| 乌兰浩特市| 长汀县| 莆田市| 顺平县| 广德县| 乐至县| 渝中区| 营口市| 博兴县| 周口市| 莎车县| 老河口市| 泾阳县| 海阳市| 澜沧| 南宁市| 庆安县| 应用必备| 台北县| 盐津县| 剑川县| 政和县| 贡觉县| 罗城| 金坛市| 贺州市| 和林格尔县| 盱眙县| 宁明县| 郁南县|