找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision –ACCV 2016; 13th Asian Conferenc Shang-Hong Lai,Vincent Lepetit,Yoichi Sato Conference proceedings 2017 Springer Internatio

[復制鏈接]
樓主: CK828
51#
發(fā)表于 2025-3-30 11:45:07 | 只看該作者
https://doi.org/10.1007/978-94-015-2796-5s, such as cars, bird species, and aircrafts, have been increasing. The collection of large datasets has helped vision based classification approaches and led to significant improvements in performances of the state-of-the-art methods. Visual classification of maritime vessels is another important t
52#
發(fā)表于 2025-3-30 12:37:54 | 只看該作者
53#
發(fā)表于 2025-3-30 18:01:33 | 只看該作者
Erratum to: Carlo and Vittorio Crivelli,end fashion that includes non-maximum suppresion (NMS) at training time. This contrasts with the traditional approach of training a CNN for a window classification loss, then applying NMS only at test time, when mAP is used as the evaluation metric in place of classification accuracy. However, mAP f
54#
發(fā)表于 2025-3-31 00:25:07 | 只看該作者
Erratum to: Carlo and Vittorio Crivelli,ring a small part of an image is largely ignored. As a result, the state-of-the-art object detection algorithm renders unsatisfactory performance as applied to detect small objects in images. In this paper, we dedicate an effort to bridge the gap. We first compose a benchmark dataset tailored for th
55#
發(fā)表于 2025-3-31 02:40:39 | 只看該作者
https://doi.org/10.1007/978-94-015-2794-1ssification. More specifically, a triplet is created among “three” whole templates or subtemplates of images to incorporate the (sub)template structure into metric learning. To further account for intra-class variations of images, we introduce a factorization technique to integrate image-specific co
56#
發(fā)表于 2025-3-31 06:24:25 | 只看該作者
57#
發(fā)表于 2025-3-31 12:55:05 | 只看該作者
58#
發(fā)表于 2025-3-31 13:51:37 | 只看該作者
https://doi.org/10.1007/978-3-319-54193-83D vision; clustering; computer vision; image processing; neural networks; action recognition; computation
59#
發(fā)表于 2025-3-31 17:38:31 | 只看該作者
60#
發(fā)表于 2025-3-31 23:13:08 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 12:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
广河县| 长子县| 公安县| 三台县| 内乡县| 奉化市| 徐州市| 平果县| 西安市| 蓬安县| 柯坪县| 金山区| 文成县| 肃宁县| 两当县| 朝阳区| 韶山市| 水城县| 康平县| 攀枝花市| 镇沅| 禹州市| 饶平县| 德昌县| 岑溪市| 陆河县| 旺苍县| 平潭县| 济宁市| 慈溪市| 大关县| 邢台市| 晋宁县| 长岛县| 德化县| 兴安盟| 鄯善县| 涡阳县| 西贡区| 滕州市| 浪卡子县|