找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision –ACCV 2016; 13th Asian Conferenc Shang-Hong Lai,Vincent Lepetit,Yoichi Sato Conference proceedings 2017 Springer Internatio

[復(fù)制鏈接]
查看: 40675|回復(fù): 61
樓主
發(fā)表于 2025-3-21 19:03:59 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer Vision –ACCV 2016
副標(biāo)題13th Asian Conferenc
編輯Shang-Hong Lai,Vincent Lepetit,Yoichi Sato
視頻videohttp://file.papertrans.cn/235/234115/234115.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Computer Vision –ACCV 2016; 13th Asian Conferenc Shang-Hong Lai,Vincent Lepetit,Yoichi Sato Conference proceedings 2017 Springer Internatio
描述.The five-volume set LNCS 10111-10115 constitutes the thoroughly refereed post-conference proceedings of the 13th Asian Conference on Computer Vision, ACCV 2016, held in Taipei, Taiwan, in November 2016..The total of 143 contributions presented in these volumes was carefully reviewed and selected from 479 submissions. The papers are organized in topical sections on Segmentation and Classification; Segmentation and Semantic Segmentation; Dictionary Learning, Retrieval, and Clustering; Deep Learning; People Tracking and Action Recognition; People and Actions; Faces; Computational Photography; Face and Gestures; Image Alignment; Computational Photography and Image Processing; Language and Video; 3D Computer Vision; Image Attributes, Language, and Recognition; Video Understanding; and 3D Vision..
出版日期Conference proceedings 2017
關(guān)鍵詞3D vision; clustering; computer vision; image processing; neural networks; action recognition; computation
版次1
doihttps://doi.org/10.1007/978-3-319-54193-8
isbn_softcover978-3-319-54192-1
isbn_ebook978-3-319-54193-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Computer Vision –ACCV 2016影響因子(影響力)




書目名稱Computer Vision –ACCV 2016影響因子(影響力)學(xué)科排名




書目名稱Computer Vision –ACCV 2016網(wǎng)絡(luò)公開度




書目名稱Computer Vision –ACCV 2016網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision –ACCV 2016被引頻次




書目名稱Computer Vision –ACCV 2016被引頻次學(xué)科排名




書目名稱Computer Vision –ACCV 2016年度引用




書目名稱Computer Vision –ACCV 2016年度引用學(xué)科排名




書目名稱Computer Vision –ACCV 2016讀者反饋




書目名稱Computer Vision –ACCV 2016讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:01:22 | 只看該作者
Visual Saliency Detection for RGB-D Images with Generative Modelmodel. The depth feature map is extracted based on superpixel contrast computation with spatial priors. We model the depth saliency map by approximating the density of depth-based contrast features using a Gaussian distribution. Similar to the depth saliency computation, the colour saliency map is c
板凳
發(fā)表于 2025-3-22 01:05:40 | 只看該作者
地板
發(fā)表于 2025-3-22 06:49:20 | 只看該作者
5#
發(fā)表于 2025-3-22 12:07:00 | 只看該作者
Generalized Fusion Moves for Continuous Label Optimizationpixel lattices and seek to assign discrete or continuous values (or both) to each pixel such that a combined data term and a spatial smoothness prior are minimized. In this work we propose to minimize difficult energies using repeated generalized fusion moves. In contrast to standard fusion moves, t
6#
發(fā)表于 2025-3-22 16:31:11 | 只看該作者
7#
發(fā)表于 2025-3-22 18:45:15 | 只看該作者
phi-LSTM: A Phrase-Based Hierarchical LSTM Model for Image Captioningbe their attributes, and recognize their relationships/interactions. In this paper, we propose a phrase-based hierarchical Long Short-Term Memory (phi-LSTM) model to generate image description. The proposed model encodes sentence as a sequence of combination of phrases and words, instead of a sequen
8#
發(fā)表于 2025-3-22 22:56:29 | 只看該作者
9#
發(fā)表于 2025-3-23 04:21:57 | 只看該作者
10#
發(fā)表于 2025-3-23 06:42:26 | 只看該作者
Using Gaussian Processes to Improve Zero-Shot Learning with Relative Attributesimage is expressed in terms of attributes that are relatively specified between different class pairs. However, for zero-shot learning the authors had assumed a simple Gaussian Mixture Model (GMM) that used the GMM based clustering to obtain the label for an unknown target test example. In this pape
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 12:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通辽市| 桓仁| 丰宁| 乐清市| 青阳县| 重庆市| 肇庆市| 平乡县| 扎兰屯市| 英山县| 枣庄市| 松阳县| 灌南县| 垣曲县| 阿坝| 达日县| 民乐县| 玛沁县| 开平市| 遂平县| 潜山县| 白河县| 韶关市| 铜陵市| 海口市| 五莲县| 修文县| 杭州市| 正安县| 怀来县| 瑞昌市| 那坡县| 邛崃市| 台安县| 射洪县| 四会市| 南召县| 宾阳县| 韶山市| 福泉市| 专栏|