找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision –ACCV 2016; 13th Asian Conferenc Shang-Hong Lai,Vincent Lepetit,Yoichi Sato Conference proceedings 2017 Springer Internatio

[復(fù)制鏈接]
查看: 40682|回復(fù): 61
樓主
發(fā)表于 2025-3-21 19:03:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Computer Vision –ACCV 2016
副標(biāo)題13th Asian Conferenc
編輯Shang-Hong Lai,Vincent Lepetit,Yoichi Sato
視頻videohttp://file.papertrans.cn/235/234115/234115.mp4
概述Includes supplementary material:
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Computer Vision –ACCV 2016; 13th Asian Conferenc Shang-Hong Lai,Vincent Lepetit,Yoichi Sato Conference proceedings 2017 Springer Internatio
描述.The five-volume set LNCS 10111-10115 constitutes the thoroughly refereed post-conference proceedings of the 13th Asian Conference on Computer Vision, ACCV 2016, held in Taipei, Taiwan, in November 2016..The total of 143 contributions presented in these volumes was carefully reviewed and selected from 479 submissions. The papers are organized in topical sections on Segmentation and Classification; Segmentation and Semantic Segmentation; Dictionary Learning, Retrieval, and Clustering; Deep Learning; People Tracking and Action Recognition; People and Actions; Faces; Computational Photography; Face and Gestures; Image Alignment; Computational Photography and Image Processing; Language and Video; 3D Computer Vision; Image Attributes, Language, and Recognition; Video Understanding; and 3D Vision..
出版日期Conference proceedings 2017
關(guān)鍵詞3D vision; clustering; computer vision; image processing; neural networks; action recognition; computation
版次1
doihttps://doi.org/10.1007/978-3-319-54193-8
isbn_softcover978-3-319-54192-1
isbn_ebook978-3-319-54193-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書(shū)目名稱(chēng)Computer Vision –ACCV 2016影響因子(影響力)




書(shū)目名稱(chēng)Computer Vision –ACCV 2016影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Computer Vision –ACCV 2016網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Computer Vision –ACCV 2016網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Computer Vision –ACCV 2016被引頻次




書(shū)目名稱(chēng)Computer Vision –ACCV 2016被引頻次學(xué)科排名




書(shū)目名稱(chēng)Computer Vision –ACCV 2016年度引用




書(shū)目名稱(chēng)Computer Vision –ACCV 2016年度引用學(xué)科排名




書(shū)目名稱(chēng)Computer Vision –ACCV 2016讀者反饋




書(shū)目名稱(chēng)Computer Vision –ACCV 2016讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:01:22 | 只看該作者
Visual Saliency Detection for RGB-D Images with Generative Modelmodel. The depth feature map is extracted based on superpixel contrast computation with spatial priors. We model the depth saliency map by approximating the density of depth-based contrast features using a Gaussian distribution. Similar to the depth saliency computation, the colour saliency map is c
板凳
發(fā)表于 2025-3-22 01:05:40 | 只看該作者
地板
發(fā)表于 2025-3-22 06:49:20 | 只看該作者
5#
發(fā)表于 2025-3-22 12:07:00 | 只看該作者
Generalized Fusion Moves for Continuous Label Optimizationpixel lattices and seek to assign discrete or continuous values (or both) to each pixel such that a combined data term and a spatial smoothness prior are minimized. In this work we propose to minimize difficult energies using repeated generalized fusion moves. In contrast to standard fusion moves, t
6#
發(fā)表于 2025-3-22 16:31:11 | 只看該作者
7#
發(fā)表于 2025-3-22 18:45:15 | 只看該作者
phi-LSTM: A Phrase-Based Hierarchical LSTM Model for Image Captioningbe their attributes, and recognize their relationships/interactions. In this paper, we propose a phrase-based hierarchical Long Short-Term Memory (phi-LSTM) model to generate image description. The proposed model encodes sentence as a sequence of combination of phrases and words, instead of a sequen
8#
發(fā)表于 2025-3-22 22:56:29 | 只看該作者
9#
發(fā)表于 2025-3-23 04:21:57 | 只看該作者
10#
發(fā)表于 2025-3-23 06:42:26 | 只看該作者
Using Gaussian Processes to Improve Zero-Shot Learning with Relative Attributesimage is expressed in terms of attributes that are relatively specified between different class pairs. However, for zero-shot learning the authors had assumed a simple Gaussian Mixture Model (GMM) that used the GMM based clustering to obtain the label for an unknown target test example. In this pape
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 17:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淮北市| 库尔勒市| 景洪市| 黄山市| 彰化市| 铜鼓县| 梁平县| 连山| 慈利县| 陆丰市| 易门县| 凉城县| 临沂市| 侯马市| 兴海县| 银川市| 孝昌县| 莲花县| 准格尔旗| 达孜县| 怀化市| 嘉荫县| 微博| 邻水| 绥化市| 乡城县| 汤原县| 苍山县| 定边县| 章丘市| 凤翔县| 辛集市| 寻甸| 隆化县| 长治市| 山东省| 苏尼特右旗| 凤庆县| 卓尼县| 新营市| 冕宁县|