找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Graphics and Geometric Modeling Using Beta-splines; Brian A. Barsky Book 1988 Springer-Verlag Berlin Heidelberg 1988 computer gra

[復(fù)制鏈接]
樓主: BRISK
41#
發(fā)表于 2025-3-28 17:57:15 | 只看該作者
42#
發(fā)表于 2025-3-28 21:45:08 | 只看該作者
https://doi.org/10.1007/978-3-642-99434-0In computer graphics, it is of interest to . a Beta-spline, that is, create a realistic two-dimensional image representing three-dimensional Beta-spline objects. This chapter shows several synthetic color images of Beta-spline objects including such features as specular highlights and texture patterns.
43#
發(fā)表于 2025-3-28 23:30:57 | 只看該作者
44#
發(fā)表于 2025-3-29 04:25:02 | 只看該作者
The Parametric Piecewise Representation,The parametric representation of a curve has each component expressed as a separate univariate (single parameter) function while that of a surface has each component defined by a separate bivariate (two parameter) function.
45#
發(fā)表于 2025-3-29 07:55:48 | 只看該作者
46#
發(fā)表于 2025-3-29 14:09:13 | 只看該作者
47#
發(fā)表于 2025-3-29 16:12:28 | 只看該作者
Geometric Continuity and Shape Parameters,Given the two curves ..(.) and ..(.), consider the joint .. Recalling equation (4.1), continuity of the unit tangent vector is achieved if.that is,.or..
48#
發(fā)表于 2025-3-29 23:10:29 | 只看該作者
Explanation of the Surface Representation,A point on the (.). Beta-spline surface patch is a weighted average of the sixteen vertices .., . = ?2, ?1, 0, 1 and . = ?2, ?1,0,1. The mathematical formulation for the patch ..(.) is then
49#
發(fā)表于 2025-3-30 01:38:00 | 只看該作者
50#
發(fā)表于 2025-3-30 04:24:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郸城县| 安多县| 铁力市| 丰台区| 资阳市| 金沙县| 南丹县| 伊金霍洛旗| 道真| 揭东县| 寻乌县| 广西| 北宁市| 本溪| 康平县| 延津县| 南雄市| 会理县| 彝良县| 凤山县| 富源县| 武隆县| 竹溪县| 宿州市| 克东县| 甘谷县| 江油市| 克东县| 博乐市| 通道| 张掖市| 渝北区| 麟游县| 宾阳县| 兴城市| 高碑店市| 宁国市| 仁怀市| 石城县| 陆良县| 清水河县|