找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Graphics and Geometric Modeling Using Beta-splines; Brian A. Barsky Book 1988 Springer-Verlag Berlin Heidelberg 1988 computer gra

[復(fù)制鏈接]
樓主: BRISK
21#
發(fā)表于 2025-3-25 05:06:29 | 只看該作者
22#
發(fā)表于 2025-3-25 10:59:22 | 只看該作者
Technology and the Human: Hans Jonasxpression for the curve will have a denominator of δ(.). It is thus of computational interest to define corresponding sets of coefficient functions and basis functions that are scaled by a factor of δ(.). This would simplify the expressions and eliminate redundant divisions. These scaled coefficient
23#
發(fā)表于 2025-3-25 13:58:39 | 只看該作者
24#
發(fā)表于 2025-3-25 17:22:17 | 只看該作者
Technik der Impfstoffe und Heilsera involves the computation of points on the surface for many different values of the domain parameters. The determination of a point on the patch requires the evaluation of the surface formulation at an appropriate (.) value. This entails the evaluation of the four basis functions at the value of . a
25#
發(fā)表于 2025-3-25 22:33:55 | 只看該作者
https://doi.org/10.1007/978-3-663-04316-4pe parameters. Analogous to the Beta-spline curve, they will now be generalized to be . shape parameters, each varying continuously along the surface. The continuous analogues of β1 and β2 will be denoted β1.(.) and β2.(.), respectively, and describe the value of each shape parameter at the point ..
26#
發(fā)表于 2025-3-26 03:58:28 | 只看該作者
Technik der Maschinen-Buchhaltung information specified by the control vertices. These shape parameters have the property that β1 = 1 indicates continuity of the parametric first derivative vector and β1 = 1 with β2 = 0 indicates continuity of the parametric first and second derivative vectors.
27#
發(fā)表于 2025-3-26 07:39:55 | 只看該作者
28#
發(fā)表于 2025-3-26 11:00:10 | 只看該作者
29#
發(fā)表于 2025-3-26 13:45:41 | 只看該作者
30#
發(fā)表于 2025-3-26 16:47:51 | 只看該作者
https://doi.org/10.1007/978-94-009-9900-8uitively “pull out” these points by increasing tension. This concept was first analytically modeled by Schweikert in [23] and an alternative development was given in [6] and generalized in [19]. A detailed derivation of the generalized form based on a variational principle is given in [1].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海晏县| 藁城市| 景宁| 铁岭县| 都昌县| 敦煌市| 政和县| 上犹县| 遂川县| 海南省| 凉城县| 晋州市| 双牌县| 堆龙德庆县| 尉犁县| 修文县| 且末县| 山西省| 西乡县| 泰宁县| 萨嘎县| 东港市| 商河县| 通化市| 成安县| 郓城县| 崇明县| 张掖市| 贵州省| 陕西省| 孟村| 洞口县| 闻喜县| 神池县| 永春县| 淮阳县| 璧山县| 顺义区| 马鞍山市| 恭城| 临江市|