找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Graphics and Geometric Modeling Using Beta-splines; Brian A. Barsky Book 1988 Springer-Verlag Berlin Heidelberg 1988 computer gra

[復(fù)制鏈接]
樓主: BRISK
31#
發(fā)表于 2025-3-26 22:01:48 | 只看該作者
32#
發(fā)表于 2025-3-27 02:20:48 | 只看該作者
33#
發(fā)表于 2025-3-27 08:50:06 | 只看該作者
Technik der Maschinen-Buchhaltung information specified by the control vertices. These shape parameters have the property that β1 = 1 indicates continuity of the parametric first derivative vector and β1 = 1 with β2 = 0 indicates continuity of the parametric first and second derivative vectors.
34#
發(fā)表于 2025-3-27 12:42:45 | 只看該作者
Bach to Rock, A Musical OdysseyThe underlying concept of this work is the synthesis of two useful concepts: the application of . to a shape; and the study of the . and . of a parametrically defined shape as fundamental geometric measures.
35#
發(fā)表于 2025-3-27 16:40:27 | 只看該作者
https://doi.org/10.1007/978-94-009-9900-8The parametric representation of a curve has each component expressed as a separate univariate (single parameter) function while that of a surface has each component defined by a separate bivariate (two parameter) function.
36#
發(fā)表于 2025-3-27 19:45:32 | 只看該作者
Heidegger’s Philosophy of TechnologyConsider a space curve (in three dimensions) parametrized with respect to an arbitrary parameter . [8, 9, 10, 15, 24]. The unit tangent vector has the same direction and sense as the parametric first derivative vector, but it is normalized.
37#
發(fā)表于 2025-3-28 00:09:44 | 只看該作者
38#
發(fā)表于 2025-3-28 03:16:38 | 只看該作者
39#
發(fā)表于 2025-3-28 08:00:20 | 只看該作者
40#
發(fā)表于 2025-3-28 13:02:24 | 只看該作者
https://doi.org/10.1007/978-3-663-04316-4An important observation is that β1.(.) and β2.(.) (equation (14.3)) can each be written as a pair of equations of similar form; specifically,.where . and . were defined in equation (14.3).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沁源县| 马山县| 娱乐| 宜丰县| 乌鲁木齐市| 武冈市| 沙坪坝区| 乾安县| 金乡县| 公主岭市| 蒙阴县| 玛沁县| 北安市| 三明市| 观塘区| 田东县| 宜州市| 民县| 封开县| 龙海市| 江源县| 五台县| 广元市| 阳谷县| 洱源县| 炎陵县| 九台市| 广元市| 奉节县| 台中县| 商丘市| 和田县| 无为县| 尼勒克县| 濮阳市| 页游| 五大连池市| 屏东县| 法库县| 枞阳县| 揭东县|