找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Graphics and Geometric Modeling Using Beta-splines; Brian A. Barsky Book 1988 Springer-Verlag Berlin Heidelberg 1988 computer gra

[復(fù)制鏈接]
樓主: BRISK
31#
發(fā)表于 2025-3-26 22:01:48 | 只看該作者
32#
發(fā)表于 2025-3-27 02:20:48 | 只看該作者
33#
發(fā)表于 2025-3-27 08:50:06 | 只看該作者
Technik der Maschinen-Buchhaltung information specified by the control vertices. These shape parameters have the property that β1 = 1 indicates continuity of the parametric first derivative vector and β1 = 1 with β2 = 0 indicates continuity of the parametric first and second derivative vectors.
34#
發(fā)表于 2025-3-27 12:42:45 | 只看該作者
Bach to Rock, A Musical OdysseyThe underlying concept of this work is the synthesis of two useful concepts: the application of . to a shape; and the study of the . and . of a parametrically defined shape as fundamental geometric measures.
35#
發(fā)表于 2025-3-27 16:40:27 | 只看該作者
https://doi.org/10.1007/978-94-009-9900-8The parametric representation of a curve has each component expressed as a separate univariate (single parameter) function while that of a surface has each component defined by a separate bivariate (two parameter) function.
36#
發(fā)表于 2025-3-27 19:45:32 | 只看該作者
Heidegger’s Philosophy of TechnologyConsider a space curve (in three dimensions) parametrized with respect to an arbitrary parameter . [8, 9, 10, 15, 24]. The unit tangent vector has the same direction and sense as the parametric first derivative vector, but it is normalized.
37#
發(fā)表于 2025-3-28 00:09:44 | 只看該作者
38#
發(fā)表于 2025-3-28 03:16:38 | 只看該作者
39#
發(fā)表于 2025-3-28 08:00:20 | 只看該作者
40#
發(fā)表于 2025-3-28 13:02:24 | 只看該作者
https://doi.org/10.1007/978-3-663-04316-4An important observation is that β1.(.) and β2.(.) (equation (14.3)) can each be written as a pair of equations of similar form; specifically,.where . and . were defined in equation (14.3).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
弥渡县| 水城县| 临湘市| 商水县| 布拖县| 南充市| 文安县| 余庆县| 鞍山市| 吉安县| 习水县| 团风县| 大余县| 墨江| 宝坻区| 连城县| 肥城市| 大余县| 洛川县| 汽车| 石台县| 清苑县| 漯河市| 沙坪坝区| 虎林市| 东阳市| 凤凰县| 福建省| 克东县| 长子县| 台安县| 汾阳市| 宁海县| 梅河口市| 涞源县| 祁阳县| 丰镇市| 尼勒克县| 宁陕县| 卢龙县| 乐清市|