找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Graphics and Geometric Modeling Using Beta-splines; Brian A. Barsky Book 1988 Springer-Verlag Berlin Heidelberg 1988 computer gra

[復(fù)制鏈接]
樓主: BRISK
31#
發(fā)表于 2025-3-26 22:01:48 | 只看該作者
32#
發(fā)表于 2025-3-27 02:20:48 | 只看該作者
33#
發(fā)表于 2025-3-27 08:50:06 | 只看該作者
Technik der Maschinen-Buchhaltung information specified by the control vertices. These shape parameters have the property that β1 = 1 indicates continuity of the parametric first derivative vector and β1 = 1 with β2 = 0 indicates continuity of the parametric first and second derivative vectors.
34#
發(fā)表于 2025-3-27 12:42:45 | 只看該作者
Bach to Rock, A Musical OdysseyThe underlying concept of this work is the synthesis of two useful concepts: the application of . to a shape; and the study of the . and . of a parametrically defined shape as fundamental geometric measures.
35#
發(fā)表于 2025-3-27 16:40:27 | 只看該作者
https://doi.org/10.1007/978-94-009-9900-8The parametric representation of a curve has each component expressed as a separate univariate (single parameter) function while that of a surface has each component defined by a separate bivariate (two parameter) function.
36#
發(fā)表于 2025-3-27 19:45:32 | 只看該作者
Heidegger’s Philosophy of TechnologyConsider a space curve (in three dimensions) parametrized with respect to an arbitrary parameter . [8, 9, 10, 15, 24]. The unit tangent vector has the same direction and sense as the parametric first derivative vector, but it is normalized.
37#
發(fā)表于 2025-3-28 00:09:44 | 只看該作者
38#
發(fā)表于 2025-3-28 03:16:38 | 只看該作者
39#
發(fā)表于 2025-3-28 08:00:20 | 只看該作者
40#
發(fā)表于 2025-3-28 13:02:24 | 只看該作者
https://doi.org/10.1007/978-3-663-04316-4An important observation is that β1.(.) and β2.(.) (equation (14.3)) can each be written as a pair of equations of similar form; specifically,.where . and . were defined in equation (14.3).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐城市| 信阳市| 精河县| 保康县| 酒泉市| 城固县| 会东县| 电白县| 南靖县| 武邑县| 福安市| 攀枝花市| 寻甸| 浦江县| 汉沽区| 沙雅县| 甘肃省| 平度市| 岢岚县| 乐昌市| 赤城县| 康平县| 谷城县| 米易县| 盘锦市| 武乡县| 阜南县| 洛阳市| 洛川县| 顺义区| 铁岭市| 吉木萨尔县| 金寨县| 溧阳市| 来安县| 清水河县| 如东县| 江源县| 宝清县| 沈阳市| 图木舒克市|