找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Graphics and Geometric Modeling Using Beta-splines; Brian A. Barsky Book 1988 Springer-Verlag Berlin Heidelberg 1988 computer gra

[復(fù)制鏈接]
樓主: BRISK
41#
發(fā)表于 2025-3-28 17:57:15 | 只看該作者
42#
發(fā)表于 2025-3-28 21:45:08 | 只看該作者
https://doi.org/10.1007/978-3-642-99434-0In computer graphics, it is of interest to . a Beta-spline, that is, create a realistic two-dimensional image representing three-dimensional Beta-spline objects. This chapter shows several synthetic color images of Beta-spline objects including such features as specular highlights and texture patterns.
43#
發(fā)表于 2025-3-28 23:30:57 | 只看該作者
44#
發(fā)表于 2025-3-29 04:25:02 | 只看該作者
The Parametric Piecewise Representation,The parametric representation of a curve has each component expressed as a separate univariate (single parameter) function while that of a surface has each component defined by a separate bivariate (two parameter) function.
45#
發(fā)表于 2025-3-29 07:55:48 | 只看該作者
46#
發(fā)表于 2025-3-29 14:09:13 | 只看該作者
47#
發(fā)表于 2025-3-29 16:12:28 | 只看該作者
Geometric Continuity and Shape Parameters,Given the two curves ..(.) and ..(.), consider the joint .. Recalling equation (4.1), continuity of the unit tangent vector is achieved if.that is,.or..
48#
發(fā)表于 2025-3-29 23:10:29 | 只看該作者
Explanation of the Surface Representation,A point on the (.). Beta-spline surface patch is a weighted average of the sixteen vertices .., . = ?2, ?1, 0, 1 and . = ?2, ?1,0,1. The mathematical formulation for the patch ..(.) is then
49#
發(fā)表于 2025-3-30 01:38:00 | 只看該作者
50#
發(fā)表于 2025-3-30 04:24:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南平市| 醴陵市| 屏山县| 龙江县| 朝阳区| 左云县| 营山县| 伽师县| 师宗县| 平定县| 芷江| 诸城市| 鹤壁市| 吴堡县| 芒康县| 监利县| 汤阴县| 米泉市| 古蔺县| 临汾市| 天柱县| 桦川县| 县级市| 普定县| 南和县| 商城县| 新干县| 云阳县| 锦屏县| 南澳县| 怀化市| 高阳县| 额敏县| 崇左市| 理塘县| 闽清县| 三都| 社旗县| 伊宁市| 奇台县| 贵南县|