找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Stochastic Programming; Models, Algorithms, Lewis Ntaimo Book 2024 Springer Nature Switzerland AG 2024 Mean-risk linear and

[復(fù)制鏈接]
樓主: injurious
31#
發(fā)表于 2025-3-26 23:21:45 | 只看該作者
Risk-Neutral Stochastic Linear Programming Methodsf the models derived in Chap. . and decomposition techniques from Chap. . to derive solution algorithms for RN-SLP. We begin our study with the classical . in Sect. 6.2, which generates a single optimality cut at a given iteration of the algorithm to approximate the recourse function. We then consid
32#
發(fā)表于 2025-3-27 04:40:23 | 只看該作者
Mean-Risk Stochastic Linear Programming Methods derived in Chap. 2 and decomposition techniques from Chap. 6 to derive solution algorithms for MR-SLP for quantile and deviation risk measures. Definitions of risk measures and deterministic equivalent problem (DEP) formulations are derived in Chap. 2. The risk measures . (QDEV), . (CVaR), and . EE
33#
發(fā)表于 2025-3-27 07:42:27 | 只看該作者
Sampling-Based Stochastic Linear Programming Methodsochastic programming (SP) models derived in Chap. . and decomposition techniques from Chaps. . and . in the solution methods for MR-SLP. We study two main classical approaches, . and .. Exterior sampling or Monte Carlo methods involve taking a sample and solving an approximation problem, and getting
34#
發(fā)表于 2025-3-27 11:41:11 | 只看該作者
Stochastic Mixed-Integer Programming Methodso the stochastic setting. Thus, SMIP inherits the nonconvexity properties of MIP and with its large-scale nature due to data uncertainty, SMIP is very challenging to solve. Therefore, it is not surprising that there are few practical algorithms for SMIP. This motivates the study of SMIP due to its m
35#
發(fā)表于 2025-3-27 15:04:05 | 只看該作者
Computational Experimentationdition to theory, models, and algorithms, implementation and application of the models and algorithms is also important. Implementing (coding) the models and algorithms on the computer requires computational experimentation. Therefore, it is fitting to end this book with a chapter on computational e
36#
發(fā)表于 2025-3-27 21:09:16 | 只看該作者
37#
發(fā)表于 2025-3-28 01:19:49 | 只看該作者
38#
發(fā)表于 2025-3-28 04:23:46 | 只看該作者
Andrea Caccialanza,Marco Marinonierefore, as in Kelley’s method, Benders decomposition algorithm generates cutting-planes (row generation). For problems in high-dimensional space, we introduce . to potentially reduce the number of iterations in Benders decomposition algorithm. In this version of the algorithm, we add a quadratic te
39#
發(fā)表于 2025-3-28 09:38:18 | 只看該作者
https://doi.org/10.1007/978-3-642-23550-4ithms for RN-SLP may not be an easy activity for many students. Therefore, in our derivation of the various algorithms, we place emphasis on implementation and provide guidelines for efficient computer codes. We end the chapter with a list of other decomposition methods for RN-SLP not covered in thi
40#
發(fā)表于 2025-3-28 11:14:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 04:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
田东县| 庆云县| 温泉县| 增城市| 锦州市| 崇礼县| 寻乌县| 六安市| 筠连县| 抚顺市| 栾川县| 浮梁县| 安义县| 德清县| 景德镇市| 罗甸县| 武汉市| 乌海市| 阜康市| 岑溪市| 巴林右旗| 北流市| 沽源县| 阿克苏市| 渭源县| 平南县| 庆阳市| 古蔺县| 当涂县| 玛沁县| 长乐市| 页游| 蕲春县| 永昌县| 通化市| 鹤峰县| 玉林市| 鹤峰县| 邹平县| 公安县| 泉州市|