找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Stochastic Programming; Models, Algorithms, Lewis Ntaimo Book 2024 Springer Nature Switzerland AG 2024 Mean-risk linear and

[復(fù)制鏈接]
查看: 42900|回復(fù): 47
樓主
發(fā)表于 2025-3-21 19:20:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Computational Stochastic Programming
副標(biāo)題Models, Algorithms,
編輯Lewis Ntaimo
視頻videohttp://file.papertrans.cn/234/233149/233149.mp4
概述Contains detailed numerical examples.Models real world problems using stochastic programming.Implements each algorithm using the latest optimization software
叢書(shū)名稱(chēng)Springer Optimization and Its Applications
圖書(shū)封面Titlebook: Computational Stochastic Programming; Models, Algorithms,  Lewis Ntaimo Book 2024 Springer Nature Switzerland AG 2024 Mean-risk linear and
描述.This book provides a foundation in stochastic, linear, and mixed-integer programming algorithms with a focus on practical computer algorithm implementation. The purpose of this book is to provide a foundational and thorough treatment of the subject with a focus on models and algorithms and their computer implementation. The book’s most important features include a focus on both risk-neutral and risk-averse models, a variety of real-life example applications of stochastic programming, decomposition algorithms, detailed illustrative numerical examples of the models and algorithms, and an emphasis on computational experimentation. With a focus on both theory and implementation of the models and algorithms for solving practical optimization problems, this monograph is suitable for readers with fundamental knowledge of linear programming, elementary analysis, probability and statistics, and some computer programming background. Several examples of stochastic programming applications areincluded, providing numerical examples to illustrate the models and algorithms for both stochastic linear and mixed-integer programming, and showing the reader how to implement the models and algorithms
出版日期Book 2024
關(guān)鍵詞Mean-risk linear and integer models; Risk Measures; Risk-Averse Models; computational experimentation; c
版次1
doihttps://doi.org/10.1007/978-3-031-52464-6
isbn_ebook978-3-031-52464-6Series ISSN 1931-6828 Series E-ISSN 1931-6836
issn_series 1931-6828
copyrightSpringer Nature Switzerland AG 2024
The information of publication is updating

書(shū)目名稱(chēng)Computational Stochastic Programming影響因子(影響力)




書(shū)目名稱(chēng)Computational Stochastic Programming影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Computational Stochastic Programming網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Computational Stochastic Programming網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Computational Stochastic Programming被引頻次




書(shū)目名稱(chēng)Computational Stochastic Programming被引頻次學(xué)科排名




書(shū)目名稱(chēng)Computational Stochastic Programming年度引用




書(shū)目名稱(chēng)Computational Stochastic Programming年度引用學(xué)科排名




書(shū)目名稱(chēng)Computational Stochastic Programming讀者反饋




書(shū)目名稱(chēng)Computational Stochastic Programming讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:39:02 | 只看該作者
Book 2024tation. The purpose of this book is to provide a foundational and thorough treatment of the subject with a focus on models and algorithms and their computer implementation. The book’s most important features include a focus on both risk-neutral and risk-averse models, a variety of real-life example
板凳
發(fā)表于 2025-3-22 01:19:48 | 只看該作者
https://doi.org/10.1007/978-94-6300-902-7also use it in later chapters of the book. In this chapter, we begin with illustrations of deterministic models applied to the numerical example and then move on to risk-neutral stochastic models. We end the chapter with illustrations of risk-averse models introduced in the previous chapter.
地板
發(fā)表于 2025-3-22 05:52:32 | 只看該作者
Junyi Zhang,Wonchul Kim,Akimasa Fujiwaratrices, we provide a review of sparse matrix formats in Sect. 10.3. We discuss program design for algorithm implementation and testing in Sect. 10.4 and end the chapter with a review of empirical analysis, methods of analysis, test problems, and reporting computational results in Sect. 10.5.
5#
發(fā)表于 2025-3-22 10:47:09 | 只看該作者
Modeling and Illustrative Numerical Examplesalso use it in later chapters of the book. In this chapter, we begin with illustrations of deterministic models applied to the numerical example and then move on to risk-neutral stochastic models. We end the chapter with illustrations of risk-averse models introduced in the previous chapter.
6#
發(fā)表于 2025-3-22 13:20:49 | 只看該作者
7#
發(fā)表于 2025-3-22 17:45:46 | 只看該作者
8#
發(fā)表于 2025-3-22 22:42:33 | 只看該作者
Sampling-Based Stochastic Linear Programming Methodsin which sequential sampling is done to solve the approximation problem. We illustrate interior sampling with the basic stochastic decomposition (SD) method for MR-SLP. Since we place emphasis on algorithm computer implementation, we also discuss how to generate random samples from the instance data.
9#
發(fā)表于 2025-3-23 05:02:41 | 只看該作者
10#
發(fā)表于 2025-3-23 09:06:20 | 只看該作者
Paul Emeka Okeke,Isunueo Benedicta Omeghien different classes of SP, i.e., stochastic linear programming (SLP), stochastic mixed-integer programming (SMIP), and probabilistically constrained stochastic programming (PC-SP). We provide simplified problem formulations with a focus on how to model the key elements of the problem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 07:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安宁市| 饶平县| 旺苍县| 新野县| 晋江市| 平南县| 惠安县| 许昌市| 淳化县| 石城县| 台南市| 云安县| 周口市| 荥阳市| 乳山市| 巢湖市| 云和县| 驻马店市| 蚌埠市| 北京市| 抚远县| 台安县| 翁牛特旗| 赞皇县| 竹北市| 嵊泗县| 鸡泽县| 富阳市| 临泉县| 黄平县| 珲春市| 哈巴河县| 荆州市| 云安县| 皋兰县| 辽宁省| 当雄县| 赞皇县| 康保县| 吴桥县| 双峰县|