找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Stochastic Programming; Models, Algorithms, Lewis Ntaimo Book 2024 Springer Nature Switzerland AG 2024 Mean-risk linear and

[復(fù)制鏈接]
樓主: injurious
21#
發(fā)表于 2025-3-25 04:28:05 | 只看該作者
Christine Behnke,Bertram Meimbresse derived in Chap. 2 and decomposition techniques from Chap. 6 to derive solution algorithms for MR-SLP for quantile and deviation risk measures. Definitions of risk measures and deterministic equivalent problem (DEP) formulations are derived in Chap. 2. The risk measures . (QDEV), . (CVaR), and . EE
22#
發(fā)表于 2025-3-25 09:43:58 | 只看該作者
Philip Michalk,Bertram Meimbresseochastic programming (SP) models derived in Chap. . and decomposition techniques from Chaps. . and . in the solution methods for MR-SLP. We study two main classical approaches, . and .. Exterior sampling or Monte Carlo methods involve taking a sample and solving an approximation problem, and getting
23#
發(fā)表于 2025-3-25 13:54:39 | 只看該作者
https://doi.org/10.1007/978-3-642-23550-4o the stochastic setting. Thus, SMIP inherits the nonconvexity properties of MIP and with its large-scale nature due to data uncertainty, SMIP is very challenging to solve. Therefore, it is not surprising that there are few practical algorithms for SMIP. This motivates the study of SMIP due to its m
24#
發(fā)表于 2025-3-25 16:33:06 | 只看該作者
25#
發(fā)表于 2025-3-25 23:22:27 | 只看該作者
26#
發(fā)表于 2025-3-26 04:08:35 | 只看該作者
Introductionth optimization problems involving data uncertainties and risk. We begin with the motivation and explain why SP has become so pervasive in operations research, science, and engineering and discuss some of its diverse set of example applications that span our everyday lives. In Sect. 1.2, we provide
27#
發(fā)表于 2025-3-26 05:22:26 | 只看該作者
Stochastic Programming Models in many decision-making problems in operations research and engineering involving risk. We introduce risk functions in Sect. 2.1 and the notion of risk measures, describing axioms that define a coherent risk measure. We consider two main classes of stochastic programming: mean-risk stochastic progr
28#
發(fā)表于 2025-3-26 12:21:15 | 只看該作者
29#
發(fā)表于 2025-3-26 15:56:49 | 只看該作者
Example Applications of Stochastic Programmingtion planning, facility location, supply chain planning, fuel treatment planning, healthcare appointment scheduling, airport time slot allocation, air traffic flow management, satellite constellation scheduling, wildfire response planning, and vaccine allocation for epidemics. These applications spa
30#
發(fā)表于 2025-3-26 17:23:21 | 只看該作者
Deterministic Large-Scale Decomposition Methods the foundation for decomposition methods for stochastic programming that followed, starting with the classical L-shaped method of Van Slyke and Wets in 1969. We begin our study with . for optimizing a convex function over a convex compact set using cutting-planes in Sect. 5.2. We then move on to .
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 07:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹿泉市| 安塞县| 东至县| 清丰县| 申扎县| 平遥县| 凤凰县| 平果县| 清水县| 黎平县| 神农架林区| 个旧市| 临安市| 阳江市| 郓城县| 大名县| 和硕县| 那坡县| 绥芬河市| 藁城市| 普定县| 仁怀市| 博罗县| 东台市| 阿勒泰市| 纳雍县| 六安市| 从江县| 抚顺市| 长沙市| 玉溪市| 乌兰察布市| 客服| 三亚市| 晋州市| 海伦市| 万安县| 嘉鱼县| 赤峰市| 六安市| 康平县|