找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Stochastic Programming; Models, Algorithms, Lewis Ntaimo Book 2024 Springer Nature Switzerland AG 2024 Mean-risk linear and

[復制鏈接]
樓主: injurious
31#
發(fā)表于 2025-3-26 23:21:45 | 只看該作者
Risk-Neutral Stochastic Linear Programming Methodsf the models derived in Chap. . and decomposition techniques from Chap. . to derive solution algorithms for RN-SLP. We begin our study with the classical . in Sect. 6.2, which generates a single optimality cut at a given iteration of the algorithm to approximate the recourse function. We then consid
32#
發(fā)表于 2025-3-27 04:40:23 | 只看該作者
Mean-Risk Stochastic Linear Programming Methods derived in Chap. 2 and decomposition techniques from Chap. 6 to derive solution algorithms for MR-SLP for quantile and deviation risk measures. Definitions of risk measures and deterministic equivalent problem (DEP) formulations are derived in Chap. 2. The risk measures . (QDEV), . (CVaR), and . EE
33#
發(fā)表于 2025-3-27 07:42:27 | 只看該作者
Sampling-Based Stochastic Linear Programming Methodsochastic programming (SP) models derived in Chap. . and decomposition techniques from Chaps. . and . in the solution methods for MR-SLP. We study two main classical approaches, . and .. Exterior sampling or Monte Carlo methods involve taking a sample and solving an approximation problem, and getting
34#
發(fā)表于 2025-3-27 11:41:11 | 只看該作者
Stochastic Mixed-Integer Programming Methodso the stochastic setting. Thus, SMIP inherits the nonconvexity properties of MIP and with its large-scale nature due to data uncertainty, SMIP is very challenging to solve. Therefore, it is not surprising that there are few practical algorithms for SMIP. This motivates the study of SMIP due to its m
35#
發(fā)表于 2025-3-27 15:04:05 | 只看該作者
Computational Experimentationdition to theory, models, and algorithms, implementation and application of the models and algorithms is also important. Implementing (coding) the models and algorithms on the computer requires computational experimentation. Therefore, it is fitting to end this book with a chapter on computational e
36#
發(fā)表于 2025-3-27 21:09:16 | 只看該作者
37#
發(fā)表于 2025-3-28 01:19:49 | 只看該作者
38#
發(fā)表于 2025-3-28 04:23:46 | 只看該作者
Andrea Caccialanza,Marco Marinonierefore, as in Kelley’s method, Benders decomposition algorithm generates cutting-planes (row generation). For problems in high-dimensional space, we introduce . to potentially reduce the number of iterations in Benders decomposition algorithm. In this version of the algorithm, we add a quadratic te
39#
發(fā)表于 2025-3-28 09:38:18 | 只看該作者
https://doi.org/10.1007/978-3-642-23550-4ithms for RN-SLP may not be an easy activity for many students. Therefore, in our derivation of the various algorithms, we place emphasis on implementation and provide guidelines for efficient computer codes. We end the chapter with a list of other decomposition methods for RN-SLP not covered in thi
40#
發(fā)表于 2025-3-28 11:14:47 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 07:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
盱眙县| 深泽县| 青州市| 长子县| 临颍县| 宝鸡市| 灌云县| 黑龙江省| 涟源市| 芷江| 镇坪县| 沭阳县| 铜陵市| 娄烦县| 灵石县| 桃园市| 阿城市| 安塞县| 甘孜县| 汝阳县| 秦皇岛市| 奉化市| 巴彦淖尔市| 全椒县| 商城县| 杂多县| 五原县| 呼图壁县| 翼城县| 福鼎市| 大庆市| 双辽市| 新乡县| 东方市| 贵溪市| 麦盖提县| 安陆市| 中超| 太仓市| 凤台县| 拜城县|