找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Stochastic Programming; Models, Algorithms, Lewis Ntaimo Book 2024 Springer Nature Switzerland AG 2024 Mean-risk linear and

[復制鏈接]
查看: 42894|回復: 47
樓主
發(fā)表于 2025-3-21 19:20:47 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computational Stochastic Programming
副標題Models, Algorithms,
編輯Lewis Ntaimo
視頻videohttp://file.papertrans.cn/234/233149/233149.mp4
概述Contains detailed numerical examples.Models real world problems using stochastic programming.Implements each algorithm using the latest optimization software
叢書名稱Springer Optimization and Its Applications
圖書封面Titlebook: Computational Stochastic Programming; Models, Algorithms,  Lewis Ntaimo Book 2024 Springer Nature Switzerland AG 2024 Mean-risk linear and
描述.This book provides a foundation in stochastic, linear, and mixed-integer programming algorithms with a focus on practical computer algorithm implementation. The purpose of this book is to provide a foundational and thorough treatment of the subject with a focus on models and algorithms and their computer implementation. The book’s most important features include a focus on both risk-neutral and risk-averse models, a variety of real-life example applications of stochastic programming, decomposition algorithms, detailed illustrative numerical examples of the models and algorithms, and an emphasis on computational experimentation. With a focus on both theory and implementation of the models and algorithms for solving practical optimization problems, this monograph is suitable for readers with fundamental knowledge of linear programming, elementary analysis, probability and statistics, and some computer programming background. Several examples of stochastic programming applications areincluded, providing numerical examples to illustrate the models and algorithms for both stochastic linear and mixed-integer programming, and showing the reader how to implement the models and algorithms
出版日期Book 2024
關(guān)鍵詞Mean-risk linear and integer models; Risk Measures; Risk-Averse Models; computational experimentation; c
版次1
doihttps://doi.org/10.1007/978-3-031-52464-6
isbn_ebook978-3-031-52464-6Series ISSN 1931-6828 Series E-ISSN 1931-6836
issn_series 1931-6828
copyrightSpringer Nature Switzerland AG 2024
The information of publication is updating

書目名稱Computational Stochastic Programming影響因子(影響力)




書目名稱Computational Stochastic Programming影響因子(影響力)學科排名




書目名稱Computational Stochastic Programming網(wǎng)絡(luò)公開度




書目名稱Computational Stochastic Programming網(wǎng)絡(luò)公開度學科排名




書目名稱Computational Stochastic Programming被引頻次




書目名稱Computational Stochastic Programming被引頻次學科排名




書目名稱Computational Stochastic Programming年度引用




書目名稱Computational Stochastic Programming年度引用學科排名




書目名稱Computational Stochastic Programming讀者反饋




書目名稱Computational Stochastic Programming讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:39:02 | 只看該作者
Book 2024tation. The purpose of this book is to provide a foundational and thorough treatment of the subject with a focus on models and algorithms and their computer implementation. The book’s most important features include a focus on both risk-neutral and risk-averse models, a variety of real-life example
板凳
發(fā)表于 2025-3-22 01:19:48 | 只看該作者
https://doi.org/10.1007/978-94-6300-902-7also use it in later chapters of the book. In this chapter, we begin with illustrations of deterministic models applied to the numerical example and then move on to risk-neutral stochastic models. We end the chapter with illustrations of risk-averse models introduced in the previous chapter.
地板
發(fā)表于 2025-3-22 05:52:32 | 只看該作者
Junyi Zhang,Wonchul Kim,Akimasa Fujiwaratrices, we provide a review of sparse matrix formats in Sect. 10.3. We discuss program design for algorithm implementation and testing in Sect. 10.4 and end the chapter with a review of empirical analysis, methods of analysis, test problems, and reporting computational results in Sect. 10.5.
5#
發(fā)表于 2025-3-22 10:47:09 | 只看該作者
Modeling and Illustrative Numerical Examplesalso use it in later chapters of the book. In this chapter, we begin with illustrations of deterministic models applied to the numerical example and then move on to risk-neutral stochastic models. We end the chapter with illustrations of risk-averse models introduced in the previous chapter.
6#
發(fā)表于 2025-3-22 13:20:49 | 只看該作者
7#
發(fā)表于 2025-3-22 17:45:46 | 只看該作者
8#
發(fā)表于 2025-3-22 22:42:33 | 只看該作者
Sampling-Based Stochastic Linear Programming Methodsin which sequential sampling is done to solve the approximation problem. We illustrate interior sampling with the basic stochastic decomposition (SD) method for MR-SLP. Since we place emphasis on algorithm computer implementation, we also discuss how to generate random samples from the instance data.
9#
發(fā)表于 2025-3-23 05:02:41 | 只看該作者
10#
發(fā)表于 2025-3-23 09:06:20 | 只看該作者
Paul Emeka Okeke,Isunueo Benedicta Omeghien different classes of SP, i.e., stochastic linear programming (SLP), stochastic mixed-integer programming (SMIP), and probabilistically constrained stochastic programming (PC-SP). We provide simplified problem formulations with a focus on how to model the key elements of the problem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 04:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
大英县| 昭觉县| 沧州市| 和静县| 赣榆县| 靖州| 清苑县| 五华县| 博乐市| 阜新| 印江| 武威市| 翁源县| 苍南县| 墨江| 内乡县| 十堰市| 迁西县| 四川省| 合肥市| 固原市| 闸北区| 和政县| 顺平县| 本溪市| 孟津县| 合阳县| 定襄县| 绥江县| 抚顺县| 敦煌市| 潼关县| 阿荣旗| 固阳县| 汾西县| 英超| 吴忠市| 冕宁县| 莆田市| 汝阳县| 忻州市|