找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computational Learning Theory; 4th European Confere Paul Fischer,Hans Ulrich Simon Conference proceedings 1999 Springer-Verlag Berlin Heide

[復(fù)制鏈接]
樓主: BRISK
41#
發(fā)表于 2025-3-28 17:31:11 | 只看該作者
42#
發(fā)表于 2025-3-28 22:46:48 | 只看該作者
43#
發(fā)表于 2025-3-29 00:04:33 | 只看該作者
Second-Order-Faktorenanalyse (SFA)d size that approximately minimizes the proportion of misclassified examples in a training set, even if there is a network that correctly classifies all of the training examples. In particular, for a training set that is correctly classified by some two-layer linear threshold network with . hidden u
44#
發(fā)表于 2025-3-29 03:14:38 | 只看該作者
45#
發(fā)表于 2025-3-29 10:26:31 | 只看該作者
46#
發(fā)表于 2025-3-29 13:59:04 | 只看該作者
Thomas Zumbroich,Andreas Mülleres alone and a . sized decision tree representation of the function constructed, in polynomial time. In contrast, such a function cannot be exactly learned with equivalence queries alone using general decision trees and other representation classes as hypotheses..Our results imply others which may b
47#
發(fā)表于 2025-3-29 18:27:57 | 只看該作者
48#
發(fā)表于 2025-3-29 21:02:00 | 只看該作者
Das Verfahren der Gew?sserstrukturkartierungressions, where every term in the consequent of every clause appears also in the antecedent of the clause, is learnable. The result holds both for the model where interpretations are examples (learning from interpretations) and the model where clauses are examples (learning from entailment)..The pap
49#
發(fā)表于 2025-3-30 03:43:57 | 只看該作者
50#
發(fā)表于 2025-3-30 06:49:39 | 只看該作者
,Umsetzung des Entwurfs in Prim?rcode,Such algorithms use roughly .(..) weights which can be prohibitively expensive. Surprisingly, algorithms like Winnow require only . weights (one per variable) and the mistake bound of these algorithms is not too much worse than the mistake bound of the more costly algorithms. The purpose of this pap
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阜新| 桑植县| 曲阜市| 新宾| 通道| 东乡族自治县| 克东县| 宁明县| 江孜县| 平顶山市| 古田县| 泰兴市| 鄂托克旗| 元朗区| 六枝特区| 万全县| 伊吾县| 阿拉尔市| 凯里市| 英山县| 东莞市| 莆田市| 井研县| 鄱阳县| 新晃| 宕昌县| 康马县| 曲松县| 巴中市| 包头市| 孙吴县| 新田县| 新晃| 巫溪县| 固原市| 抚松县| 南澳县| 大宁县| 韩城市| 滨海县| 潮州市|